MIT team probes inflammation, disease link

Jul 31, 2006

New research at MIT may help scientists better understand the chemical associations between chronic inflammation and diseases such as cancer and atherosclerosis. The work could lead to drugs that break the link between the two.

When an infection occurs, immune cells flock to the area and secrete large amounts of highly reactive chemicals to combat the invader. But, these inflammatory chemicals also attack normal tissue surrounding the infection and damage critical components of cells, including DNA. During chronic inflammation, that damage may lead to mutations or cell death and even to cancer and other diseases.

MIT researchers, led by toxicology graduate student Yelena Margolin of the Biological Engineering Division, have discovered that the DNA damage produced by one of these inflammatory chemicals, nitrosoperoxycarbonate, occurs at unexpected locations along the DNA helix. The finding counters the prevailing theory about where the DNA damage occurs and may shed light on new ways to diagnose and combat inflammation.

"We need to understand the mechanisms of inflammation in order to make new drugs that will break the link between inflammation and disease and to develop predictive biomarkers," said Dr. Peter Dedon, professor of toxicology and biological engineering and associate director of the Biological Engineering Division at MIT. "One of our goals is to develop biomarkers that can tell if you have inflammation and to define its extent, severity and location."

Margolin, Dedon and their colleagues at MIT and New York University reported their findings in a recent advance online issue of Nature Chemical Biology.

For years researchers have studied how the chemicals associated with the body's response to infection can damage DNA. That process begins with the removal of an electron from guanine, one of the four base building blocks that determine the genetic code in DNA. That removal is called oxidation, and guanine is the most easily oxidized of the four building blocks.

The prevailing theory has been that oxidation occurs most frequently when the guanine is sandwiched between two other guanine bases in the DNA helix.

By using comprehensive chemical screening and analysis of the frequency of DNA damage, the researchers found that a chemical produced during inflammation, nitrosoperoxycarbonate, actually caused oxidative damage at guanines that were supposed to be the least easily oxidized. The damage did not occur in clusters of guanine as expected, but rather at locations where guanine precedes cytosine, another of the four building blocks.

"That observation overturns the prevailing theory for predicting the location of DNA damage in the genome and complicates our understanding of the basis for diseases arising from chronic inflammation," said Dedon. "But it is likely to stir up discussions in the DNA damage and mutagenesis fields that could help us better understand the consequences of inflammation."

Margolin's and Dedon's colleagues on the paper are Jean-Francois Cloutier, auxiliary professor of pharmaceutical chemistry at UniversitŽ Laval in QuŽbec and formerly of the Dedon lab; Vladimir Shafirovich, research professor of chemistry at New York University; and Nicholas Geacintov, professor of chemistry and department chair at New York University.

The research was funded by the National Cancer Institute.

Source: MIT

Explore further: Prized sea snail not at risk of extinction, federal officials say

add to favorites email to friend print save as pdf

Related Stories

DNA damage study probes inflammation, disease link

Jul 25, 2006

New research at MIT may help scientists better understand the chemical associations between chronic inflammation and diseases such as cancer and atherosclerosis. The work could lead to drugs that break the ...

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Orbital samples with sight-saving potential

Dec 11, 2013

Those who travel to space are rewarded with a beautiful sight - planet Earth. But the effects of space travel on the human sense of sight aren't so beautiful. More than 30 percent of astronauts who returned ...

Recommended for you

Keep dogs and cats safe during winter

14 hours ago

(HealthDay)—Winter can be tough on dogs and cats, but there are a number of safe and effective ways you can help them get through the cold season, an expert says.

Scientists target mess from Christmas tree needles

Dec 26, 2014

The presents are unwrapped. The children's shrieks of delight are just a memory. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree.

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.