'Micro-boxes' of water used to study single molecules

Jul 20, 2006

Researchers at the National Institute of Standards and Technology have demonstrated the use of water droplets as minuscule "boxes" for small numbers of biomolecules. The unusually simple containment method may enable easier experiments on single molecule dynamics and perhaps lead to the development of molecule-sorting devices that might be used for medical screening or biotechnology research.

The work was reported in the July 3 issue of Applied Physics Letters.

The NIST team creates the boxes by briefly shaking a mixture of water, the biomolecules to be studied, and a fluorocarbon medium. Water droplets form in the oily fluorocarbon and naturally encapsulate one to several biomolecules. The researchers then watch through a microscope while using infrared lasers as "optical tweezers" to manipulate and combine the droplets (dubbed "hydrosomes") inside a tiny chamber on a slide.

'Micro-boxes' of water used to study single molecules
Prodded by optical tweezers, two "hydrosomes" move together and fuse to mix their contents, in an experiment using water droplets as minuscule boxes for manipulating small numbers of biomolecules for nanobiochemistry. Credit: NIST

A green laser is then used to excite the molecules in individual droplets, and the light emissions over several seconds are analyzed to count the molecules and observe other phenomena. The researchers use two sets of optical tweezers to move droplets together to fuse them and mix their contents. The team demonstrated the technique by trapping and manipulating droplets encapsulating various molecules (including a delicate protein that survived the shaking process), detecting the fluorescence signal from dye and protein molecules, and observing the transfer of energy from one end of a specially treated DNA molecule to the other.

Water offers several advantages over other methods for containing single molecules, such as attaching them to surfaces or placing them inside liposomes (artificial cells). The water droplets can be held far from any surface that might interfere, can readily encapsulate biomolecules (which prefer being in water as opposed to the fluorocarbon medium), and can readily fuse together to mix molecules or rapidly change their chemical environment.

The water droplets currently average about 300 nanometers in diameter and contain volumes measured in quadrillionths of liters; research is continuing to improve methods for controlling droplet size for different applications.

Citation: J.E. Reiner, A.M. Crawford, R.B. Kishore, L.S. Goldner, K. Helmerson and M.K. Gilson. 2006. Optically trapped aqueous droplets for single molecule studies. Applied Physics Letters. July 3.

Source: National Institute of Standards and Technology

Explore further: New approach to form non-equilibrium structures

add to favorites email to friend print save as pdf

Related Stories

How to uncover the true face of atomic nuclei?

Jul 10, 2014

Protons and neutrons are the basic constituents of atomic nuclei. Are they distributed homogeneously, or perhaps in quartets consisting of two protons and two neutrons? Physicists from Poland and Spain have ...

Recommended for you

New approach to form non-equilibrium structures

42 minutes ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

2 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

6 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

6 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0