Engineers envision exploring Mars with mini probes

Jul 18, 2006
Engineers envision exploring Mars with mini probes
An artist's rendering shows the baseball-sized probes being designed by MIT researchers for Mars exploration. Illustration / Gus Frederick

MIT engineers and scientist colleagues have a new vision for the future of Mars exploration: a swarm of probes, each the size of a baseball, spreading out across the planet in every direction.

Thousands of probes, powered by fuel cells, could cover a vast area now beyond the reach of today's rovers, including exploring remote and rocky terrain that large rovers cannot navigate.

"They would start to hop, bounce and roll and distribute themselves across the surface of the planet, exploring as they go, taking scientific data samples," said Steven Dubowsky, the MIT professor of mechanical engineering who is leading the research team.

Dubowsky's team plans to test prototypes on Earth this fall and estimates that a trip to Mars is about 10 years away. He is now working with Penelope Boston, director of the cave research program at the New Mexico Institute of Mining and Technology, to create probes that can handle the rough terrain of Mars.

Scientists believe that lava tubes commonly seen on Mars are a promising location to search for signs of water. Lava tubes are tunnels left behind by underground lava flows. Signs of these tubes, which are also present in many locations on Earth, can be seen above ground.

Engineers envision exploring Mars with mini probes
This illustration shows what a swarm of mini probes might look like exploring the surface of Mars. Illustration courtesy / Stephen Dubowsky

The tubes could be entered through holes that formed on the Mars surface where sections of the tubes have collapsed, but these formations are too treacherous for today's rovers to explore. However, tiny bouncing probes could make their way inside the caves.

Mars also features canyons that could have once had rivers flowing through them. The canyons, too, are inaccessible to rovers, but small probes might be able to make their way down the canyon faces.

One of the major advantages of the mini probes is that losing a few out of hundreds or thousands of probes sent into a treacherous area would not derail the overall mission, Dubowsky said. "You would certainly be willing to sacrifice some of these 1,000 balls" to gather information from remote areas, he said.

Each probe would weigh about 100 grams (4 ounces) and would carry its own tiny fuel cell. "You could hop for a long, long time on a few grams of fuel," Dubowsky said.

Artificial muscles inside the probes could make them hop an average of six times per hour, with a maximum rate of 60 hops per hour. The devices would travel about 1.5 meters per hop; they can also bounce or roll. In 30 days, a swarm of probes could cover 50 square miles, according to Dubowsky.

Each probe would carry different types of sensors, including cameras and environmental sensors. The probes are made of durable and lightweight plastic that could withstand the rigors of Mars travel and the extreme cold. Their fuel cells will provide enough heat to keep their electronics and sensors operable.

One thousand of the probes would have the same volume and weight as the Spirit rover. "For the weight and size of Spirit you could certainly send more than 1,000 of these sensors up there, which would have much greater capability," Dubowsky said.

The probes would be able to communicate with nearby probes through a local area network (LAN). Data would be sent to a base station that would transmit information back to Earth.

Other possible applications for the small robots include search and rescue missions in collapsed buildings or other dangerous sites, and counter-terrorist activities (searching for terrorists in caves).

Last year, the researchers got funding from the NASA Institute for Advanced Concepts (NIAC). The NIAC grant is meant to help move the project from the concept stage to the prototype stage.

Other collaborators on the project include Jean-Sebastien Plante, a postdoctoral researcher in MIT's Department of Mechanical Engineering, and Fritz Prinz and Mark Cutkowsky of Stanford University.

Source: MIT

Explore further: New solar telescope peers deep into the sun to track the origins of space weather

Related Stories

How to study high-speed flows

Feb 09, 2015

Joanna Austin (MS '98, PhD '03) does not just go with the flow. She picks it apart and analyzes it. One of the newest faculty members in Caltech's Division of Engineering and Applied Science is a gas dynamicist, ...

Scientific instruments of Rosetta's Philae lander

Sep 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Against the current with lava flows

May 12, 2014

Primeval lava flows formed the massive canyons and gorge systems on Mars. Water, by contrast, was far too scarce on the red planet to have cut these gigantic valleys into the landscape. This is the conclusion ...

Recommended for you

Radio silence as Russia tries to contact space cargo

44 minutes ago

Russia will try again in the coming hours to make contact with an unmanned cargo ship after communications were lost following the spacecraft's launch toward the International Space Station, NASA said Tuesday.

Strong evidence for coronal heating theory presented

3 hours ago

The Sun's surface is blisteringly hot at 6,000 kelvins or 10,340 degrees Fahrenheit—but its atmosphere is another 300 times hotter. This has led to an enduring mystery for those who study the Sun: What ...

The view from up there, down here

6 hours ago

When many people saw the first stunning photos of the fragile blue marble of Earth from space, it changed their outlook of humanity. It was a singular moment in time when people around the world were watching ...

The weird ways fire behaves in space (w/ Video)

8 hours ago

Light a match on earth and you can expect the flame to shoot up in a tapering bulb. But light that match in space and you might not even recognize the small, blue orb at the tip. That's because fire behaves ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.