For the First Time, a Five-Fold Bond

Oct 14, 2005

Chemists at UC Davis have made the first stable compound with a five-fold bond between two metal atoms. The work with chromium could give researchers new insights into the nature of chemical bonding.

Much of chemistry is about understanding how bonds are made and broken. For most of the history of chemistry, only single, double or triple bonds were known. Multiple bonds are particularly important in carbon chemistry, but only certain metals are theoretically capable of more than triple bonds, said Philip Power, professor of chemistry at UC Davis and senior author on the paper.

The dark red crystals were synthesized by Tailuan (Peter) Nguyen, a graduate student in Power's laboratory. The chromium-based compound is stable at room temperature but decomposes in the presence of water, and spontaneously ignites when exposed to air.

To make the compound, Nguyen and Power attached large carbon-based molecules to chromium atoms, constraining how they could behave. They were then able to coax the chromium atoms to bond with each other. The multiple bonding was confirmed by X-ray crystallography and magnetic measurements.

As far as we know, no comparable compound exists in nature, Power said.

In addition to Nguyen and Power, other authors on the paper were postdoctoral researcher Andrew Sutton, theorist Marcin Brynda and crystallographer James Fettinger at the UC Davis chemistry department; and Gary Long, professor of chemistry at the University of Missouri, Rolla. Peter Klavins and Long Pham at the UC Davis physics department carried out magnetic measurements for the study.

The work is published online in Science Express and will appear in the print version of the journal Science later this year.

Source: UC Davis

Explore further: Using magnetic fields to understand high-temperature superconductivity

add to favorites email to friend print save as pdf

Related Stories

UK mini-laboratory catches up with double comet

Aug 05, 2014

This week, on 6 August, a mini-laboratory developed and built at the UK's Science and Technology Facilities Council's (STFC) Rutherford Appleton Laboratory is due to rendezvous with a comet.

Recommended for you

Theory of the strong interaction verified

8 hours ago

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

Fluctuation X-ray scattering

11 hours ago

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Understanding spectral properties of broadband biphotons

12 hours ago

Advances in quantum optical technologies require scientists to control and exploit the properties of so-called biphotons. Biphotons occur when two photons become 'quantum-entangled' - spatially separate entities ...

Hydrodynamics approaches to granular matter

13 hours ago

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.