Huge potential for bioplastics

Jul 17, 2006
Huge potential for bioplastics

It almost sounds too good to be true - turning cow pats into plastic. But the unlikely-looking liquid in the flask Dr Steven Pratt holds is the key ingredient to an environmentally friendlier drink bottle.

The murky mix of acids is produced by fermenting bacteria taken from wastewater ponds and fed with a glucose solution. A glucose solution is used in this laboratory situation, but the bacteria will feed with equal efficiency on dairy-farm effluent or other carbon-based wastewater.

It is the renewable and biodegradable nature of such ingredients that give the types of plastic produced from the acids the classification of ‘bio-plastics’.

A researcher in the Centre for Environmental Technology and Engineering, Dr Pratt says the potential for bioplastic production in New Zealand is huge.

“The waste produced by our agricultural and pulp and paper industries is ideal, and there is so much of it.”

He says plastics are a major environmental problem as they are non-biodegradable and their production from synthetic polymers consumes vast quantities of non-renewable resources.

“By using cheap and renewable sources there is a tremendous opportunity for biopolymer production to be made economic. At the same time, the problems of wastewater treatment and natural resource depletion are addressed.”

He says some acids are better than others for the production of bio-plastic. For example, acetic acid-based plastic is comparatively brittle to that produced from other acids; it has been shown that the inclusion of propionic acid produces polymer chains (the building blocks of plastic) with the favourable characteristic of malleability.

The task of producing one particular acid, however, is complicated by the diversity of the constituents of raw wastewater and effluent.

Part of Dr Pratt’s project looks at controlling the fermentation procedure by adjusting factors such as pH so that only one kind of acid is produced. His team of postgraduate students are also focusing on a stage in the fermentation process that is typically ignored.

“Fermentation has been around for thousands of years, and the science of fermentation has been understood for quite some time, but no-one has really looked at what happens in transient stages.”

A transient stage occurs when bacteria are shocked by the input of food (in this case, carbon-based effluent) or when conditions such as pH are altered. The micro-organisms react to these changes in interesting ways before evening out and producing a consistent volume of mixed acids.

“In this transient stage one type of acid may be made in greater proportions, and other unknown or unexpected compounds can also be made. Sometimes the most interesting things are made when things go wrong.”

Source: Massey University

Explore further: Researchers bring clean energy a step closer

add to favorites email to friend print save as pdf

Related Stories

Killing fish egg fungus with a disinfectant

Feb 19, 2015

A product used as a disinfectant in agriculture, food preparation, and medical facilities also kills a fungus that causes the disease saprolegniasis on catfish eggs, and it has the potential to treat harmful ...

Jumping genes have essential biological functions

Feb 19, 2015

"Alu" sequences are small repetitive elements representing about 10% of our genome. Because of their ability to move around the genome, these "jumping genes" are considered as real motors of evolution. However, they were ...

Potential new breathalyzer for lung cancer screening

Feb 18, 2015

Researchers from Chongqing University in China have developed a high sensitive fluorescence-based sensor device that can rapidly identify cancer related volatile organic compounds—biomarkers found exclusively in the exhaled ...

Recommended for you

Researchers bring clean energy a step closer

Feb 27, 2015

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

The construction of ordered nanostructures from benzene

Feb 27, 2015

A way to link benzene rings together in a highly ordered three-dimensional helical structure using a straightforward polymerization procedure has been discovered by researchers from RIKEN Center for Sustainable ...

Superatomic nickel core and unusual molecular reactivity

Feb 27, 2015

A superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems, that contain superatoms, open a number of amazing possibilities ...

Oat breakfast cereals may contain a common mold-related toxin

Feb 25, 2015

Oats are often touted for boosting heart health, but scientists warn that the grain and its products might need closer monitoring for potential mold contamination. They report in ACS' Journal of Agricultural and Food Chemistry that s ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.