Huge potential for bioplastics

Jul 17, 2006
Huge potential for bioplastics

It almost sounds too good to be true - turning cow pats into plastic. But the unlikely-looking liquid in the flask Dr Steven Pratt holds is the key ingredient to an environmentally friendlier drink bottle.

The murky mix of acids is produced by fermenting bacteria taken from wastewater ponds and fed with a glucose solution. A glucose solution is used in this laboratory situation, but the bacteria will feed with equal efficiency on dairy-farm effluent or other carbon-based wastewater.

It is the renewable and biodegradable nature of such ingredients that give the types of plastic produced from the acids the classification of ‘bio-plastics’.

A researcher in the Centre for Environmental Technology and Engineering, Dr Pratt says the potential for bioplastic production in New Zealand is huge.

“The waste produced by our agricultural and pulp and paper industries is ideal, and there is so much of it.”

He says plastics are a major environmental problem as they are non-biodegradable and their production from synthetic polymers consumes vast quantities of non-renewable resources.

“By using cheap and renewable sources there is a tremendous opportunity for biopolymer production to be made economic. At the same time, the problems of wastewater treatment and natural resource depletion are addressed.”

He says some acids are better than others for the production of bio-plastic. For example, acetic acid-based plastic is comparatively brittle to that produced from other acids; it has been shown that the inclusion of propionic acid produces polymer chains (the building blocks of plastic) with the favourable characteristic of malleability.

The task of producing one particular acid, however, is complicated by the diversity of the constituents of raw wastewater and effluent.

Part of Dr Pratt’s project looks at controlling the fermentation procedure by adjusting factors such as pH so that only one kind of acid is produced. His team of postgraduate students are also focusing on a stage in the fermentation process that is typically ignored.

“Fermentation has been around for thousands of years, and the science of fermentation has been understood for quite some time, but no-one has really looked at what happens in transient stages.”

A transient stage occurs when bacteria are shocked by the input of food (in this case, carbon-based effluent) or when conditions such as pH are altered. The micro-organisms react to these changes in interesting ways before evening out and producing a consistent volume of mixed acids.

“In this transient stage one type of acid may be made in greater proportions, and other unknown or unexpected compounds can also be made. Sometimes the most interesting things are made when things go wrong.”

Source: Massey University

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

New camera sheds light on mate choice of swordtail fish

26 minutes ago

We have all seen a peacock show its extravagant, colorful tail feathers in courtship of a peahen. Now, a group of researchers have used a special camera developed by an engineer at Washington University in ...

Making quantum dots glow brighter

1 hour ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

Recommended for you

A refined approach to proteins at low resolution

12 hours ago

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

15 hours ago

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

15 hours ago

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0