Supernova leaves behind mysterious object

Jul 07, 2006
XMM-Newton's view of Supernova Remnant RCW 103
This image, obtained thanks to ESA's XMM-Newton X-ray telescope on 23 August 2005, shows the aftermath of a 2000-year-old star explosion. In the heart of the central blue dot in this image, smaller than a pinpoint, likely lies a neutron star only about 20 kilometers across. The nature of this object is like nothing detected before. Scientists from the Istituto Nazionale di Astrofisica (INAF) in Milan have detected unusual X-ray pulsations. Understanding the central source's true nature will lead to new insights about supernovae, neutron stars and their evolution. Credit: ESA/XMM-Newton/A.De Luca (INAF-IASF )

Thanks to data from ESA's XMM-Newton satellite, a team of scientists taking a closer look at an object discovered over 25 years ago have found that it is like none other known in our galaxy.

The object is in the heart of supernova remnant RCW103, the gaseous remains of a star that exploded about 2 000 years ago. Taken at face value, RCW103 and its central source would appear to be a textbook example of what is left behind after a supernova explosion: a bubble of ejected material and a neutron star.

A deep, continuous 24.5-hour observation has revealed something far more complex and intriguing, however. The team, from the Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) of the Istituto Nazionale di Astrofisica (INAF) in Milan, Italy, has found that the emission from the central source varies with a cycle that repeats itself every 6.7 hours. This is an astonishingly long period, tens of thousands of times longer than expected for a young neutron star. Also, the object's spectral and temporal properties differ from an earlier XMM-Newton observation of this very source in 2001.

"The behaviour we see is especially puzzling in view of its young age, less than 2 000 years," said Andrea De Luca of IASF-INAF, the lead author. "It is reminiscent of a multimillion-year-old source. For years we have had a sense that the object is different, but we never knew how different until now."

The object is called 1E161348-5055, which the scientists have conveniently nicknamed 1E (where E stands for Einstein Observatory which discovered the source). It is embedded nearly perfectly in the centre of RCW 103, about 10 000 light years away in the constellation Norma. The near-perfect alignment of 1E in the centre of RCW 103 leaves astronomers rather confident that the two were born in the same catastrophic event.

When a star at least eight times more massive than our sun runs out of fuel to burn, it explodes in an event called a supernova. The stellar core implodes, forming a dense nugget called a neutron star or, if there's enough mass, a black hole. A neutron star contains about a sun's worth of mass crammed into a sphere only about 20 kilometres across.

Scientists have searched for years for 1E's periodicity in order to learn more about its properties, such as how fast it is spinning or whether it has a companion.

"Our clear detection of such a long period together with secular variability in X-ray emission makes for a very weird source," said Patrizia Caraveo of INAF, a co-author and leader of the Milano Group. "Such properties in a 2000-year-old compact object leave us with two probable scenarios, essentially a source that is accretion-powered or magnetic-field-powered."

1E could be an isolated magnetar, an exotic subclass of highly magnetized neutron stars. Here, the magnetic field lines act as brakes for the spinning star, liberating energy. About a dozen magnetars are known. But magnetars usually spin several times per minute. If 1E is spinning only once every 6.67 hours, as the period detection indicates, the magnetic field needed to slow the neutron star in just 2000 years would be too big to be plausible.

A standard magnetar magnetic field could do the trick, however, if a debris disk, formed by leftover material of the exploded star, is also helping to slow down the neutron star spin. This scenario has never been observed before and would point to a new type of neutron star evolution.

Alternatively, the long 6.67-hour period could be the orbital period of a binary system. Such a picture requires that a low-mass normal star managed to remain bound to the compact object generated by the supernova explosion 2000 year ago. Observations do allow for a companion of half the mass of our Sun, or even smaller.

But 1E would be an unprecedented example of a low-mass X-ray binary system in its infancy, a million times younger than standard X-ray binary systems with light companions. Young age is not the only peculiarity of 1E. The source's cyclic pattern is far more pronounced than that observed for dozens of low-mass X-ray binary systems calling for some unusual neutron star feeding process.

A double accretion process could explain its behaviour: The compact object captures a fraction of the dwarf star's wind (wind accretion), but it is also able to pull out gas from the outer layers of its companion, which settles in an accretion disc (disc accretion). Such an unusual mechanism could be at work in an early phase of the life of a low-mass X-ray binary, dominated by the effects of the initial, expected, orbital eccentricity.

"RCW 103 is an enigma," said Giovanni Bignami, director of CESR,Toulouse, and co-author. "We simply don't have a conclusive answer to what is causing the long X-ray cycles. When we do figure this out, we're going to learn a lot more about supernovae, neutron stars and their evolution."

Had the star exploded in the northern sky, Cleopatra could have seen it and considered it to be an omen of her unhappy end, Caraveo said. Instead the explosion took place deep in the southern sky, and no one recorded it. Nevertheless, the source is a good omen for X-ray astronomers hoping to learn about stellar evolution.

Source: European Space Agency

Explore further: Computers beat brainpower when it comes to counting stars

add to favorites email to friend print save as pdf

Related Stories

Hardy star survives supernova blast

Mar 20, 2014

(Phys.org) —When a massive star runs out fuel, it collapses and explodes as a supernova. Although these explosions are extremely powerful, it is possible for a companion star to endure the blast. A team ...

Centaurus A: A new look at an old friend

Feb 06, 2014

(Phys.org) —Just weeks after NASA's Chandra X-ray Observatory began operations in 1999, the telescope pointed at Centaurus A (Cen A, for short). This galaxy, at a distance of about 12 million light-years ...

Big chill sets in as RHIC physics heats up

Feb 04, 2014

If you think it's been cold outside this winter, that's nothing compared to the deep freeze setting in at the Relativistic Heavy Ion Collider (RHIC), the early-universe-recreating "atom smasher" at the U.S. ...

Recommended for you

ESO image: A study in scarlet

19 hours ago

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

Apr 15, 2014

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

Apr 15, 2014

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

User comments : 0

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Red moon at night; stargazer's delight

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...