Full 3-D image of nanocrystals' interior created by shining X-rays through them

Jul 05, 2006

A vital step towards the ultimate goal of being able to take 'photographs' of individual molecules in action has been achieved by an international team led by UCL (University College London) researchers at the London Centre for Nanotechnology.

They report in the journal Nature on a novel method of obtaining a full 3-D image of the interior of nanocrystals. Using a process known as coherent X-ray diffraction imaging, they were able to build a picture of the inside of nanocrystals by measuring and inverting diffraction patterns.

Ultimately, the technique will help in the development of X-ray free-electron lasers, which will allow single-molecule imaging. It will also allow researchers to more accurately assess the defects in any given material which gives them specific properties.

Professor Ian Robinson, of the UCL Department of Physics & Astronomy and the London Centre for Nanotechnology, who led the study, says: "This new imaging method shows that the interior structure of atomic displacements within single nanocrystals can be obtained by direct inversion of the diffraction pattern. We hope one day this will be applied to determine the structure of single protein molecules placed in the femtosecond beam of a free-electron laser.

"Coherent X-ray diffraction imaging emerged from the realisation that over-sampled diffraction patterns can be inverted to obtain real space images. It is an attractive alternative to electron microscopy because of the better penetration of the electromagnetic waves in materials of interest, which are often less damaging to the sample than electrons."

The inversion of a diffraction pattern back to an image has already been proven to yield a unique 'photograph' in two or higher dimensions. However, previously researchers have encountered difficulties with 3-D structures with deformations as these interfere with the symmetry of the pattern. To overcome this problem, the UCL team used a lead nanocrystal that was crystallised in an ultrahigh vacuum. It showed that asymmetries in the diffraction pattern can be mapped to deformities, providing a detailed 3-D map of the location of them in the crystal.

Source: University College London

Explore further: Study sheds new light on why batteries go bad

add to favorites email to friend print save as pdf

Related Stories

Scientists map protein in living bacterial cells

Sep 04, 2014

(Phys.org) —Scientists have for the first time mapped the atomic structure of a protein within a living cell. The technique, which peered into cells with an X-ray laser, could allow scientists to explore ...

Uncovering the 3-D structure of a key neuroreceptor

Aug 03, 2014

EPFL scientists reveal for the first time the 3D structure of a crucial neuroreceptor. The achievement has great implications for understanding the basic mechanism of electrical signal transmission between neurons and might ...

X-ray imaging reveals a complex core

Jul 04, 2014

Macromolecular complexes composed of self-assembling proteins and nucleic acids hold promise for a wide range of applications, including drug delivery, sensing and molecular electronics. Scientists have developed ...

Recommended for you

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

Researchers create world's largest DNA origami

Sep 11, 2014

Researchers from North Carolina State University, Duke University and the University of Copenhagen have created the world's largest DNA origami, which are nanoscale constructions with applications ranging ...

Excitonic dark states shed light on TMDC atomic layers

Sep 11, 2014

(Phys.org) —A team of Berkeley Lab researchers believes it has uncovered the secret behind the unusual optoelectronic properties of single atomic layers of transition metal dichalcogenide (TMDC) materials, ...

User comments : 0