Controlling the Vortex: a Novel Way to Create Switches

Jul 03, 2006

Researchers at the University of Arkansas have found a way to create switching in nanoscale materials, opening the path to using these new properties for memory devices, nanomotors, nanoswitches or nanosensors.

Researchers Sergey Prosandeev, Inna Ponomarena, Igor Kornev, Ivan Naumov and Laurent Bellaiche, professor of physics in the J. William Fulbright College of Arts and Sciences, report their findings in an upcoming issue of Physical Review Letters.

“The properties of nanoscale objects are often different from the properties of objects at the macroscopic scale,” Prosandeev said. A nanometer is a billionth of a meter – things found at the nanoscale are smaller than bacteria, and possibly the size of a virus, atom or molecule. “We try to study the new properties of objects at the nanoscale to understand how to apply them to technology.”

Prosandeev and his colleagues study piezoelectric compounds, materials that change shape in an electric field, or create an electric field when they change shape. Such materials, currently used in medical ultrasound and naval sonar, appear to lose these properties at the nanoscale because they lose their polarization.

However, this “loss” is governed by a vortex within the nanodot, where the charges, which swirl in an almost circular motion, cancel one another.

The researchers decided to calculate the possibility of switching the direction of the vortex, which would open up the possibility of using these nanoscale materials in switches, sensors and other devices.

“We use very complex but extremely close to nature computations,” Prosandeev said. The researchers looked at what would happen if they used an inhomogeneous electric field arising, for example, from two different charges located away from the nanodot.

They found that the charges directed the vortex of the nanodot: when the charges were moved, the vortex moved, and when they swapped the two charges, the vortex adopted an opposite direction.

This vortex can be used to influence the change from electrical to mechanical energy and back, which is what drives piezoelectric compounds at the macro scale, Prosandeev said.

Source: University of Arkansas

Explore further: For electronics beyond silicon, a new contender emerges

add to favorites email to friend print save as pdf

Related Stories

Harnessing magnetic vortices for making nanoscale antennas

Apr 30, 2014

(Phys.org) —Scientists at the U.S. Department of Energy's Brookhaven National Laboratory are seeking ways to synchronize the magnetic spins in nanoscale devices to build tiny yet more powerful signal-generating ...

Magnetic vortex reveals key to spintronic speed limit

Aug 28, 2012

(Phys.org)—The evolution of digital electronics is a story of miniaturization - each generation of circuitry requires less space and energy to perform the same tasks. But even as high-speed processors move ...

Charting New Nanomemory

Nov 14, 2006

University of Arkansas physicists seeking to better understand the properties of ferroelectric materials at the nanoscale have discovered previously unknown properties.

Recommended for you

For electronics beyond silicon, a new contender emerges

7 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

8 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

9 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0