Torch-sized devices will detect disease and weapons

Oct 10, 2005

Researchers at the University of Essex have been awarded almost £1.2 million as part of a programme to develop a new generation of portable, handheld radiation detectors that could have a range of potential applications from disease diagnosis to weapons detection.

The new devices, which would be the size of a normal torch, will detect radiation in the THz (terahertz) region of the electromagnetic spectrum. It is hoped they could be used in applications such as screening for explosive chemicals or drugs to help with security and crime prevention, to look for pollution in the local environment, and by doctors to help diagnosis.

The collaborative project, funded by grants from the Engineering and Physical Sciences Research Council totalling £2 million, is being conducted by a team of researchers in the Department of Electronic Systems Engineering in collaboration with academics from UCL (University College London), the Universities of Bath and Leeds, and the Centre for Integrated Photonics Ltd in Ipswich.

Professor Henning, who is leading the team, explained: 'THz radiation falls between the infrared and microwave regions of the electromagnetic spectrum and can be imagined as either very high frequency radio waves, or as light which is invisible to the naked eye.

'For a long time it has been quite difficult to generate and detect THz, but, in recent years people have used large, powerful lasers to create pulses of THz radiation. This has proved very useful in medical applications to build up pictures of body tissue, rather like an x-ray, which can show up abnormalities. However, such devices require a large power supply and are usually bulky. With a small, low power device, which can run off batteries, the possibilities for practical applications open up enormously.'

Other interesting areas for application include using THz in fossil imaging, analysing chemicals in gases, and as part of astronomical observations.

The Portable Terehertz Systems Based on Advanced InP Technology (PORTRAIT) project is due to be completed in 2008.

Source: University of Essex

Explore further: The Ancient Maya and virtual worlds: Different perspectives on material meanings

add to favorites email to friend print save as pdf

Related Stories

A terahertz generator with the highest signal quality

Dec 16, 2013

Researchers at the Universidad Carlos III of Madrid (UC3M) and the firm Luz WaveLabs are developing an innovative Terahertz generator that improves signal quality by one million times as compared to the best ...

Funding for new security screening technology

Oct 09, 2013

Asqella, a spin-off of VTT Technical Research Centre of Finland, sells revolutionary passive THz imaging systems capable of remote detection of items concealed about the body. The company has received nearly one million euros ...

Nanodevices for a 'More than Moore' world

Oct 04, 2013

Moore's Law - which holds that the number of transistors on an integrated circuit, and hence its processing power, doubles every 18 months - has been the guiding principal of chip design for almost half a ...

New level for continuous-wave terahertz lasers

Oct 03, 2013

Since the first quantum cascade (QC) laser was demonstrated in 1994 and implemented in THz regime in 2002, they have become one of the most important solid state light sources in this frequency range. The ...

Recommended for you

Bloody souvenir not from decapitated French king: DNA

7 hours ago

Two centuries after the French people beheaded King Louis XVI and dipped their handkerchiefs in his blood, DNA analysis has thrown new doubt on the authenticity of one such rag kept as a morbid souvenir.

User comments : 0

More news stories

Researchers trace HIV adaptation to its human host

"Much research has focused on how HIV adapts to antiviral drugs – we wanted to investigate how HIV adapts to us, its human host, over time," says lead author Zabrina Brumme from Simon Fraser University.