Torch-sized devices will detect disease and weapons

Oct 10, 2005

Researchers at the University of Essex have been awarded almost £1.2 million as part of a programme to develop a new generation of portable, handheld radiation detectors that could have a range of potential applications from disease diagnosis to weapons detection.

The new devices, which would be the size of a normal torch, will detect radiation in the THz (terahertz) region of the electromagnetic spectrum. It is hoped they could be used in applications such as screening for explosive chemicals or drugs to help with security and crime prevention, to look for pollution in the local environment, and by doctors to help diagnosis.

The collaborative project, funded by grants from the Engineering and Physical Sciences Research Council totalling £2 million, is being conducted by a team of researchers in the Department of Electronic Systems Engineering in collaboration with academics from UCL (University College London), the Universities of Bath and Leeds, and the Centre for Integrated Photonics Ltd in Ipswich.

Professor Henning, who is leading the team, explained: 'THz radiation falls between the infrared and microwave regions of the electromagnetic spectrum and can be imagined as either very high frequency radio waves, or as light which is invisible to the naked eye.

'For a long time it has been quite difficult to generate and detect THz, but, in recent years people have used large, powerful lasers to create pulses of THz radiation. This has proved very useful in medical applications to build up pictures of body tissue, rather like an x-ray, which can show up abnormalities. However, such devices require a large power supply and are usually bulky. With a small, low power device, which can run off batteries, the possibilities for practical applications open up enormously.'

Other interesting areas for application include using THz in fossil imaging, analysing chemicals in gases, and as part of astronomical observations.

The Portable Terehertz Systems Based on Advanced InP Technology (PORTRAIT) project is due to be completed in 2008.

Source: University of Essex

Explore further: The stapes of a neanderthal child points to the anatomical differences with our species

Related Stories

New light shed on electron spin flips

Jan 07, 2015

Researchers from Berlin Joint EPR Lab at Helmholtz-Zentrum Berlin (HZB) and University of Washington (UW) derived a new set of equations that allows for calculating electron paramagnetic resonance (EPR) transition ...

A single-sheet graphene p-n junction with two top gates

Nov 06, 2014

Researchers in Canada have designed and fabricated a single-sheet graphene p-n junction with two top gates. The standard technique, using a top and a bottom gate, can lead to damaging of the graphene layer. ...

A terahertz generator with the highest signal quality

Dec 16, 2013

Researchers at the Universidad Carlos III of Madrid (UC3M) and the firm Luz WaveLabs are developing an innovative Terahertz generator that improves signal quality by one million times as compared to the best ...

Recommended for you

Destroyed Mosul artefacts to be rebuilt in 3D

Mar 27, 2015

It didn't take long for the scientific community to react. Two weeks after the sacking of the 300 year-old Mosul Museum by a group of ISIS extremists went viral on Youtube, researchers from the ITN-DCH, IAPP ...

Boys plagiarise more than girls at school

Mar 27, 2015

Research by the University of the Balearic Islands has analysed the phenomenon of academic plagiarism among secondary school students. The study, published in the journal Comunicar, confirms that this practi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.