Nanotechnology 'fertile' for energy breakthrough

Jun 30, 2006

Thinking small may help solve one of the world's biggest problems -- the need for alternative energy sources -- according to scientists attending the first Energy Nanotechnology International Conference held June 26-28 at MIT.

"Energy is one of the greatest challenges of the century," Claude Canizares, MIT's Bruno Rossi Professor of Physics, told attendees of the conference produced by the American Society of Mechanical Engineers' (ASME's) Nanotechnology Institute. "We need significant breakthroughs in science and technology. The promise of nanotechnology provides fertile ground for such breakthroughs."

Nanotechnology's potential impact on solar energy in particular was addressed at the conference.

"I think we'll see the peaking of oil and natural gas sooner than most of those in the fossil fuel industry think," said David Carlson, chief scientist at BP Solar. "By 2035 photovoltaics could produce about 10 percent of the world's electricity and play a major role in reducing carbon dioxide emissions."

Photovoltaics is the technical term for generating electricity from light.

MIT's Vladimir Bulovic said that nanotechnologies such as nanodots and nanorods are potentially "disruptive" technologies in the solar field. That means they could cause a major switch in a primary energy source, potentially proving more efficient than the silicon used in most solar energy devices today. Bulovic is fabricating quantum dot photovoltaics using a microcontact printing process.

"If 2 percent of the continental United States were covered with photovoltaic systems with a net efficiency of 10 percent, we would be able to supply all the U.S. energy needs," said Bulovic, the KDD Associate Professor of Communications and Technology in MIT's Department of Electrical Engineering and Computer Science.

The technical conference included invited and contributed presentations from academia and industry. Among the speakers were Michael Graetzel, professor at the École Polytechnique Fédérale de Lausanne in Switzerland, and MIT Institute Professor Mildred Dresselhaus.

Dresselhaus gave a talk titled "Addressing Grand Energy Challenges Through Advanced Materials."

Other talks centered on nanowire-based dye-sensitized solar cells, heat transfer enhancement in nanofluids, hydrogen storage and electrochemical conversion and storage.

"With this conference we want to put into the scientific area what nanotechnology can do for large-scale energy applications," said Gang Chen, conference chair and a professor in the Department of Mechanical Engineering.

Manuscripts submitted to the conference will be published in a future issue of the ASME Journal of Heat Transfer.

Source: MIT

Explore further: Researchers make nanostructured carbon using the waste product sawdust

add to favorites email to friend print save as pdf

Related Stories

Nokia turnaround since handset unit sale continues

31 minutes ago

Nokia appears to have turned around its fortunes after the sale of its ailing cellphone unit to Microsoft, reporting a third-quarter net profit of 747 million euros ($950 million), from a loss of 91 million euros a year earlier. ...

Yahoo CEO defends strategy in face of criticism

32 minutes ago

Signaling her reign has reached a pivotal juncture, Yahoo CEO Marissa Mayer is trying to convince restless shareholders that the long-struggling Internet company is heading in the right direction.

Sk Hynix logs all-time high Q3 earnings

47 minutes ago

SK Hynix, the world's second-largest memory chip maker, reported Thursday a record high quarterly net profit for the three months to September on strong sales and currency earnings.

Apple computer sells for record $905K in NY

56 minutes ago

One of the first Apple computers ever built has sold in New York for $905,000, leading Bonhams auction house to declare it the world's most expensive computer relic.

Recommended for you

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Research unlocks potential of super-compound

Oct 22, 2014

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 0