Novel connection found between biological clock and cancer

Jun 29, 2006

Dartmouth Medical School geneticists have discovered that DNA damage resets the cellular circadian clock, suggesting links among circadian timing, the cycle of cell division, and the propensity for cancer.

Their work, reported June 29 in Science Express, the advance electronic publication of Science, implies a protective dimension for the biological clock in addition to its pacemaker functions that play such a sweeping role in the rhythms and activities of life.

"The notion that the clock regulates DNA-damage input and that mutation can affect the clock as well as the cell cycle is novel," says Jay Dunlap, professor and chair of genetics at DMS. "It suggests a fundamental connection among circadian timing, cell cycle progress, and potentially the origins of some cancers."

Dunlap is a co-author of the paper with DMS colleagues, Jennifer Loros, professor of biochemistry, graduate student Christopher L. Baker, and former students António M. Pregueiro and Qiuyun Liu.

The team of Loros and Dunlap were among to first to delineate the intricate web of clockwork genes, proteins and feedback loops that drive circadian rhythms, working chiefly in the classic genetic model organism Neurospora, the common bread mold.

One gene (period-4) was identified over 25 years ago by a mutation that affects two clock properties, shortening the circadian period and altering temperature compensation. For this study, the researchers cloned the gene based on its position in the genome, and found it was an important cell cycle regulator. When they eliminated the gene from the genome, the clock was normal, indicating that the mutation interfered in some way with the clock, rather than supplying something that the clock normally needs to run.

Biochemically, the mutation results in a premature modification of the well understood clock protein, frequency (FRQ). The investigators demonstrated that this was a direct result of action by an enzyme, called in mammals checkpoint kinase-2 (CHK2), whose normal role is exclusively in regulating the cell division cycle. CHK2 physically interacts with FRQ; the mutation makes this interaction much stronger. However, a mutant enzyme that has lost its activity has no effect on the clock.

Normally CHK2 is involved in the signal response pathway that begins when DNA is damaged and results in a temporary stoppage of cell division until the damage is fixed. The researchers found that the resetting effect of DNA damage requires the period-4 clock protein, and that period-4 is the homolog, the Neurospora version, of the mammalian checkpoint kinase.

Moreover, the clock regulates expression of the period-4 gene. This closes a loop connecting the clock to period-4 and period-4 to the clock and the cell cycle. The clock normally modulates expression of this gene that encodes an important cell cycle regulator, and that cell cycle regulator in turn affects not only the cell cycle but also the clock.

Recent evidence in mammalian cells shows that other cell cycle regulators physically interact with clock proteins. Loss of at least one clock protein (mammalian period-2) is known to increase cancer susceptibility. The coordination of the clock and cell division through cell cycle checkpoints, supports the clock's "integral role in basic cell biology," conclude the researchers." Their work can help advance understanding of cancer origins as well as the timing of anti-cancer treatment.

Source: Dartmouth Medical School

Explore further: Leeches help save woman's ear after pit bull mauling

add to favorites email to friend print save as pdf

Related Stories

A new era for atomic clocks

Feb 05, 2014

A revolution is under way in timekeeping. Precision timekeeping based on atomic clocks already underpins much of our modern technology—telecommunications, computer networks and satellite-based positioning ...

Time is of the essence

Feb 05, 2014

New findings in mice suggest that merely changing meal times could have a significant effect on the levels of triglycerides in the liver. The results of this Weizmann Institute of Science study, recently ...

Vibrations influence the circadian clock of a fruit fly

Jan 31, 2014

The internal circadian clock of a Drosophila (fruit fly) can be synchronised using vibrations, according to research published today in the journal Science. The results suggest that an animal's own moveme ...

Microsoft Research does Cloud-Offloaded GPS

Dec 25, 2012

(Phys.org)—GPS reduces battery life in a smartphone or tablet, a problem that has challenged a team led by principal researcher Jie Liu at Microsoft Research. Liu has said in the past that sensing and energy ...

Synthetic genetic clock checks the thermometer

Jan 07, 2014

(Phys.org) —Genetic systems run like clockwork, attuned to temperature, time of day and many other factors as they regulate living organisms. Scientists at Rice University and the University of Houston ...

Recommended for you

Treating depression in Parkinson's patients

8 hours ago

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Suddenly health insurance is not for sale

11 hours ago

(HealthDay)— Darlene Tucker, an independent insurance broker in Scotts Hill, Tenn., says health insurers in her area aren't selling policies year-round anymore.

User comments : 0

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...