Landfills, chemical weapon debris possibly a good match, computer model suggests

Jun 28, 2006

Putting building debris contaminated by chemical weapons into municipal landfills likely would pose only a minimal risk to nearby communities and the surrounding environment, according to a study scheduled for publication in the July 1 issue of the American Chemical Society journal Environmental Science & Technology. The study's computer model, developed by environmental engineers at the Technical University of Denmark and North Carolina State University, could help policymakers and waste management officials determine what to do with these harmful materials if another terrorist attack occurs.

"The results indicate that burial in a landfill will not result in a massive release of toxic chemicals," says Morton A. Barlaz, Ph.D., the study's corresponding author. "Our work can now be used by scientists who specialize in health effects to confirm that landfill disposal is acceptable. All indications are this is the case."

The new study, supported by the Environmental Protection Agency, will need to be verified by laboratory research, Barlaz cautions. But, he adds, the finding is an important first step toward clarifying whether these potentially lethal compounds, including sarin, mustard gas and VX, could be safely contained in a municipal landfill.

Concerns about contaminated building debris arose following the Sept. 11, 2001, terrorist attacks on the World Trade Center and the Pentagon as well as the later discovery of anthrax in a U.S. Senate office building, postal facilities in Washington, D.C., and Trenton, N.J., and several buildings owned by media corporations.

For this study, a team of landfill experts used a computer model that combined what is known about organic material in the nation's 2,000 lined solid waste landfills with information available about the behavior of chemical warfare agents to predict how these highly toxic compounds would behave under typical landfill conditions. The researchers included several key factors in their model including the chemical properties of the contaminants, the amount of water entering the landfill, landfill gas production and a description of the protective liner and cover.

The computer model predicted that virtually all of the compounds would bind themselves to organic waste in the landfill. In addition, most chemical warfare agents are rapidly transformed into less toxic forms when they come into contact with water in the landfill. The computer simulation also allowed the researchers to analyze the potential for contaminated gas emissions from a landfill as well as the potential for chemical agent movement through the landfill liner into groundwater.

"There were no chemical warfare agents in the gas. That's significant because of the potential for fugitive gas emissions from landfills." Barlaz says. "Similarly, there was no movement of contaminants through the liner, thus eliminating concerns of groundwater contamination."

To validate the model's findings, Barlaz and his colleagues are conducting laboratory experiments using surrogates, such as malathion, that mimic the behavior of chemical agents but are safer to handle. "This is an important area of research. But like other work on emergency preparedness, I really hope that we never have to apply the results of this work," Barlaz says.

Source: American Chemical Society

Explore further: UN moves toward major treaty for ocean biodiversity

add to favorites email to friend print save as pdf

Related Stories

Tackling pharmaceutical fall-out in the environment

Nov 04, 2014

Researchers at the University of York say that more should be done to tackle the problem of inappropriate disposal of pharmaceutically-contaminated wastes. They also have a potential solution.

New class of industrial polymers discovered

May 15, 2014

(Phys.org) —Scientists from IBM Research have successfully discovered a new class of polymer materials that can potentially transform manufacturing and fabrication in the fields of transportation, aerospace, ...

Some antibacterials come with worrisome silver lining

Feb 24, 2014

Silver has long been known for its ability to kill some of the nasty microbes that can make people sick. In hospitals, it's used to help burn victims, to combat germs on catheters and even to wipe out dangerous "superbugs" ...

World's shrinking groundwater 'needs better governance'

Dec 30, 2013

An eminent Australian water scientist has urged the world to take better care of its groundwater resources – or risk dangerous scarcities, economic impacts and potential conflicts in coming decades.

Saving Earth's water from toxic waste

Aug 20, 2013

Scientists have devised a better way to protect groundwater from acids, heavy metals and toxic chemicals, helping to secure the Earth's main freshwater supply.

Recommended for you

UN moves toward major treaty for ocean biodiversity

1 hour ago

UN member states agreed Saturday to begin negotiations on a treaty to protect marine biodiversity in ocean areas extending beyond territorial waters, in a move heralded by environmental organizations.

Ocean science needs more funding

Jan 23, 2015

Facing critical dangers like rising seas and the impact of climate change on marine life, US scientists need more funding in the next decade, officials said Friday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.