The strange world of self-induced transparency and light bullets

Jun 27, 2006

The remarkable phenomena of self-induced transparency and solitons will be studied in a new project supported by a grant of £397K from EPSRC. This joint theoretical and experimental project, involving scientists from the Advanced Technology Institute at the University of Surrey along with colleagues in the UK, France, and the USA, will study fundamental quantum coherent phenomena which may one day have applications in optical information processing.

The passage of very bright, very short light pulses through an optical material shows many interesting and useful effects. Normally, the pulse would spread out in space and time as a result of diffraction and dispersion. However when the pulse is very bright, nonlinear effects can exactly cancel this spreading, and the light pulse propagates without any change in shape: a 'soliton' or 'light bullet'.

It is easier to form solitons when the light is confined to a small cavity, and 'cavity solitons' are now attracting interest as a way of storing and manipulating data for optical storage or optical computing. Another effect, seen when the pulse duration is very short, is self-induced transparency (SIT), in which the material which normally absorbs light becomes completely transparent to a bright, short-duration light pulse.

This research project is based on theoretical predictions by one of the co-investigators, Dr. Gabriella Slavcheva. Using a new theory of nonlinear coherent pulse dynamics based on Richard Feynman's model of atoms in an electromagnetic field, Dr. Slavcheva predicted the existence of cavity solitons formed as a result of self-induced transparency.

With the help of collaborators from the École Normale Supérieure in Paris, and the University of Arizona, the scientists from the ATI will employ both theory and experiment to demonstrate the existence of this new type of soliton and to investigate the potential for applications in information technology and communications.

Source: University of Surrey

Explore further: Could 'Jedi Putter' be the force golfers need?

add to favorites email to friend print save as pdf

Related Stories

Sony's PlayStation 4 sales top seven million

26 minutes ago

Sony says it has sold seven million PlayStation 4 worldwide since its launch last year and admitted it can't make them fast enough, in a welcome change of fortune for the Japanese consumer electronics giant.

Weibo IPO below expectations, raises $285.6 mn

43 minutes ago

Sina Weibo has sold fewer shares than expected in its US IPO which has been priced below expectations, a report said Thursday, ahead of its listing which takes place after selloffs on Wall Street.

'Chief Yahoo' David Filo returns to board

1 hour ago

Yahoo announced the nomination of three new board members, including company co-founder David Filo, who earned the nickname and formal job title of "Chief Yahoo."

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.