Silica Nanobeads Create Fast Enzyme Sensor

Jun 26, 2006

Proteases are an important family of enzymes involved in many key biochemical processes, including the metastatic spread of cancer cells from a primary tumor.

Because of the importance of these enzymes in a variety of disease processes, researchers have developed a wide range of protease sensors, but few are sensitive enough to monitor real-time activity of protease activity either in the body or in clinically useful diagnostic assays. But a new assay, using silica nanobeads, appears to overcome this limitation.

The investigators published their work in the journal Sensors and Actuators B.

Shiela Grant, Ph.D., of the University of Missouri, Columbia, and colleagues took advantage of a physical effect known as fluorescence resonance energy transfer, or FRET, to create the new sensor. FRET is a process in which one molecule absorbs light energy and passes it to a nearby molecule that then releases the energy in the form of fluorescent light. If the pair of molecules become physically separated, FRET does not occur and the fluorescent signal disappears.

In this work, the investigators anchored the twin components of a FRET system to the surface of a silica nanobead using a small peptide linker molecule that can be severed by a pre-specified protease. In this case, the investigators synthesized peptide linkers that can be severed by the protein known as trypsin. As a control, the researchers also attached the FRET components to silica nanobeads using a peptide that trypsin cannot cleave. The large surface area of the silica nanobeads allowed the researchers to attach hundreds of FRET pairs to each nanobeads sensor, enabling the bead to fluoresce brightly when not in the presence of trypsin.

However, when the investigators added trypsin to a solution of the nanobeads, they saw a sharp decline in fluorescence within two minutes. As expected, fluorescence remained stable with the control nanobeads. The sensor nanobeads were able to detect trypsin concentrations as low as 12 micrograms of enzyme per milliliter of solution, well within a range that would be useful for clinical measurements. Nevertheless, the researchers note that they are developing new linkers that should further increase the sensitivity of this assay.

This work is detailed in a paper titled, “Development of a protease biosensor utilizing silica nanobeads.” This paper was published online in advance of print publication. An abstract is available at the journal’s website.

Source: National Cancer Institute

Explore further: World's smallest propeller could be used for microscopic medicine

add to favorites email to friend print save as pdf

Related Stories

Security CTO to detail Android Fake ID flaw at Black Hat

13 minutes ago

Where have you heard this before: A team of security researchers discover a security flaw in Android devices. This is, however, news. This time, experts are talking about a flaw that involves a widespread ...

Huge waves measured for first time in Arctic Ocean

1 hour ago

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water which is predicted to extend across the whole Arctic Ocean before the middle ...

Underwater elephants

1 hour ago

In the high-tech world of science, researchers sometimes need to get back to basics. UC Santa Barbara's Douglas McCauley did just that to study the impacts of the bumphead parrotfish (Bolbometopon muricatum) on cor ...

Recommended for you

A new way to make microstructured surfaces

12 hours ago

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

Tough foam from tiny sheets

Jul 29, 2014

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

User comments : 0