Silica Nanobeads Create Fast Enzyme Sensor

Jun 26, 2006

Proteases are an important family of enzymes involved in many key biochemical processes, including the metastatic spread of cancer cells from a primary tumor.

Because of the importance of these enzymes in a variety of disease processes, researchers have developed a wide range of protease sensors, but few are sensitive enough to monitor real-time activity of protease activity either in the body or in clinically useful diagnostic assays. But a new assay, using silica nanobeads, appears to overcome this limitation.

The investigators published their work in the journal Sensors and Actuators B.

Shiela Grant, Ph.D., of the University of Missouri, Columbia, and colleagues took advantage of a physical effect known as fluorescence resonance energy transfer, or FRET, to create the new sensor. FRET is a process in which one molecule absorbs light energy and passes it to a nearby molecule that then releases the energy in the form of fluorescent light. If the pair of molecules become physically separated, FRET does not occur and the fluorescent signal disappears.

In this work, the investigators anchored the twin components of a FRET system to the surface of a silica nanobead using a small peptide linker molecule that can be severed by a pre-specified protease. In this case, the investigators synthesized peptide linkers that can be severed by the protein known as trypsin. As a control, the researchers also attached the FRET components to silica nanobeads using a peptide that trypsin cannot cleave. The large surface area of the silica nanobeads allowed the researchers to attach hundreds of FRET pairs to each nanobeads sensor, enabling the bead to fluoresce brightly when not in the presence of trypsin.

However, when the investigators added trypsin to a solution of the nanobeads, they saw a sharp decline in fluorescence within two minutes. As expected, fluorescence remained stable with the control nanobeads. The sensor nanobeads were able to detect trypsin concentrations as low as 12 micrograms of enzyme per milliliter of solution, well within a range that would be useful for clinical measurements. Nevertheless, the researchers note that they are developing new linkers that should further increase the sensitivity of this assay.

This work is detailed in a paper titled, “Development of a protease biosensor utilizing silica nanobeads.” This paper was published online in advance of print publication. An abstract is available at the journal’s website.

Source: National Cancer Institute

Explore further: Ultra-small block 'M' illustrates big ideas in drug delivery

add to favorites email to friend print save as pdf

Related Stories

Internet access limited in developing world

30 minutes ago

Most people in the developing world do not use the Internet, with access limited by high costs, poor availability and a lack of relevant content, a Facebook report said Tuesday.

Manhattan Project physicist Ralph Nobles dies at 94

38 minutes ago

(AP)—Ralph Nobles, a nuclear physicist who worked on the Manhattan Project and later led efforts to save thousands of acres of San Francisco Bay wetlands from development, died following complications of pneumonia, according ...

In Japan, robot dogs are for life - and death

40 minutes ago

Incense smoke wafts through the cold air of the centuries-old Buddhist temple as a priest chants a sutra, praying for the peaceful transition of the souls of the departed.

US sees little severe weather so far in 2015

41 minutes ago

(AP)—While a big chunk of the nation deals with snow and ice, the U.S. is poised to end January and February with the fewest bouts of severe weather in decades.

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.