California teens use Rice's NanoKids for virtual nanotech training

Jun 21, 2006

A team of "virtual" teachers developed by a Rice University nanotechnology researcher are going to help some of California's brightest high school students design, build and test new structures, one atom at a time.

The NanoKids and "nanocar" are key components of the curriculum when students report for the Nanotechnology and Robotics class at the California State Summer School for Mathematics and Science (COSMOS) on July 9 at the University of California, Santa Cruz. Both were born in the Rice University labs of James M. Tour, the Chao Professor of Chemistry, professor of mechanical engineering and materials science and professor of computer science.

Students will design and animate the NanoKids, which are characters based on actual anthropomorphic molecules synthesized in the laboratory. The NanoKids help students and teachers visualize molecular-scale science in a way that is fun and easy to understand. The world's first single-molecule car comes complete with chassis, axles and four buckyball wheels. In a kind of reverse CAD process, students will use powerful new molecular modeling software to build the nanocar and learn how to animate it moving across a gold surface, illustrating the same phenomena demonstrated in Tour's lab earlier this year.

"The idea is to use these figures, in an animated sense, to instruct school kids on the beauty of nanoscale research using entities that operate at that size domain," Tour said.

Helping the students "see" what they are doing on the nanoscale will be an early version of NanoEngineer-1 developed by Nanorex Inc., the world's first developer of tools for the design, simulation and analysis of atomically precise molecular machine systems.

"This is NanoEngineer-1's first job in the 'real world', and I am very pleased it will introduce students to the fundamentals of molecular modeling and molecular dynamics simulations," said Nanorex CEO Mark Sims. "It is our hope that Nanorex, through educational partnerships like this one with COSMOS, will help change the way we all think about nanotechnology by no longer defining it within the framework of existing applications and products. I'm eager to see what these bright, creative kids come up with."

Rice University's models and Nanorex's tools will bring students closer than ever to "actually building things atom by atom," said COSMOS instructor Miguel F. Aznar, director of education for the Foresight Nanotech Institute. "This will be the first time we've been able to give high school students hands-on practice with nanotechnology structures. It makes nanotechnology tangible, connecting it to the science they've studied."

Source: Rice University

Explore further: Shaping the future of energy storage with conductive clay

add to favorites email to friend print save as pdf

Related Stories

Microbot muscles: Chains of particles assemble and flex

Nov 10, 2014

In a step toward robots smaller than a grain of sand, University of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines.

Recommended for you

Nanomaterials to preserve ancient works of art

15 hours ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

16 hours ago

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.