Research advances understanding of how hydrogen fuel is made

Oct 05, 2005
Research advances understanding of how hydrogen fuel is made

Oxygen may be necessary for life, but it sure gets in the way of making hydrogen fuel cheaply and abundantly from a family of enzymes present in many microorganisms. Blocking oxygen’s path to an enzyme’s production machinery could lead to a renewable energy source that would generate only water as its waste product.

Image: Schematic diagram of hydrogen-oxygen reaction taking place in hydrogenase CpI. (Graphic courtesy of Jordi Cohen)

Researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign have opened a window by way of computer simulation that lets them see how and where hydrogen and oxygen travel to reach and exit an enzyme’s catalyst site – the H cluster – where the hydrogen is converted into energy.

The Illinois scientists and three colleagues from the National Renewable Energy Laboratory in Golden, Colo., detailed their findings in the September issue of the journal Structure. What they found could help solve a long-standing economics problem. Because oxygen permanently binds to hydrogen in the H cluster, the production of hydrogen gas is halted. As a result, the supply is short-lived.

Numerous microorganisms have enzymes known as hydrogenases that simply use sunlight and water to generate hydrogen-based energy.

“Understanding how oxygen reaches the active site will provide insight into how hydrogenase’s oxygen tolerance can be increased through protein engineering, and, in turn, make hydrogenase an economical source of hydrogen fuel,” said Klaus Schulten, Swanlund Professor of Physics at Illinois and leader of the Beckman’s Theoretical Biophysics Group.

Using computer modeling developed in Schulten’s lab – Nanoscale Molecular Dynamics (NAMD) and Visual Molecular Dynamics (VMD) – physics doctoral student Jordi Cohen created an all-atom simulation model based on the crystal structure of hydrogenase CpI from Clostridium pasteurianum.

This model allowed Cohen to visualize and track how oxygen and hydrogen travel to the hydrogenase’s catalytic site, where the gases bind, and what routes the molecules take as they exit. Using a new computing concept, he was able to describe gas diffusion through the protein and predict accurately the diffusion paths typically taken.

“What we discovered was surprising,” Schulten said. “Both hydrogen and oxygen diffuse through the protein rather quickly, yet, there are clear differences.”

Oxygen requires a bit more space compared with the lighter and smaller hydrogen, staying close to few well localized fluctuating channels. The hydrogen gas traveled more freely. Because the protein is more porous to hydrogen than to oxygen, the hydrogen diffused through the oxygen pathways but also through entirely new pathways closed to oxygen, the researchers discovered.

The researchers concluded that it could be possible to close the oxygen pathways of hydrogenase through genetic modification of the protein and, thereby, increase the tolerance of hydrogenases to oxygen without disrupting the release of hydrogen gas.

Co-authors with Schulten and Cohen were Kwiseon Kim, Paul King and Michael Seibert, all of the National Renewable Energy Laboratory. The National Institutes of Health, National Science Foundation and the U.S. Department of Energy funded the research.

NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. VMD is a molecular visualization program for displaying, animating and analyzing large biomolecular systems using 3-D graphics.

Source: University of Illinois at Urbana-Champaign

Explore further: Cool calculations for cold atoms: New theory of universal three-body encounters

add to favorites email to friend print save as pdf

Related Stories

Solar fuels as generated by nature

Aug 21, 2014

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

Bioinspired catalyst splits water

Aug 08, 2014

Plants use photosynthesis to convert carbon dioxide and water into sugars and oxygen. The process starts in a cluster of manganese, calcium and oxygen atoms at the heart of a protein complex called photosystem ...

Directly visualizing hydrogen bonds

Jul 15, 2014

Using a newly developed, ultrafast femtosecond infrared light source, chemists at the University of Chicago have been able to directly visualize the coordinated vibrations between hydrogen-bonded molecules—the ...

Recommended for you

New method for non-invasive prostate cancer screening

6 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

7 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

8 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

12 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0