'Land of the ever-young' gene reprogrammes cells

Jun 14, 2006

University of Edinburgh scientists have discovered that the “ever-young” gene Nanog can cause adult cells to switch back to an embryonic state. The finding, to be published in the prestigious journal Nature, is the first to show that a specific gene affects the reprogramming of a mature cell type into a naïve state. The Edinburgh team believe this is a promising step towards understanding how to promote regeneration of damaged tissues and organs using a person’s own cells.

The team of scientists, lead by Professor Austin Smith at the Institute for Stem Cell Research, investigated the switching of adult cell types into embryonic stem cells after cell fusion. Fusion is the combination of two cells to form a single hybrid cell. Like nuclear transfer, the cloning process used to create Dolly the sheep, cell fusion can reprogramme the genetic information in a specialised cell to a naïve embryonic state. But this occurs very rarely. Says Professor Smith, “We set out to identify genes that could make reprogramming more efficient – our first candidate was Nanog because of its special role in formation of the early embryo and embryonic stem cells”.

The Edinburgh scientists fused mouse embryonic stem cells with brain stem cells, a type of adult stem cell. They found that the addition of Nanog resulted in a massive increase in the numbers of hybrid cells, all of which behaved like embryonic stem cells. Most importantly the hybrid cells showed the capacity to make many different cell types, such as heart and gut. “This means that the genetic programme of the brain cells has been erased and replaced by the unspecialised programme of an early embryo cell” says Dr Jose Silva, first author of this study.

Dr Silva adds “The effect of Nanog is remarkable. All of the hybrid cells become fully converted to embryonic stem cells. If we can figure out how Nanog does this, it may become possible to switch cell types without fusion or cloning.” However, the Edinburgh team must also identify at least one other key gene. “Nanog has great power” says Professor Smith, “but it does not work in isolation, only in partnership with other genes present in embryonic stem cells”.

This research was supported by the Biotechnology and Biological Sciences Research Council (BBSRC), the Medical Research Council (MRC) and The Wellcome Trust. Jose Silva was a Long-term Fellow of the European Molecular Biology Organisation (EMBO).

Citation: Silva, J, Chambers, I, Pollard, S and Smith, A (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature doi:10.1038/nature04914

Source: Nature

Explore further: Medical charity: Time running out to stop Ebola

add to favorites email to friend print save as pdf

Related Stories

How to tell good stem cells from the bad

Sep 05, 2014

The promise of embryonic stem cell research has been thwarted by an inability to answer a simple question: How do you know a good stem cell from a bad one?

New protagonist in cell reprogramming discovered

Sep 04, 2014

A group of researchers from the Centre for Genomic Regulation in Barcelona have described the role of a protein that is crucial for cell reprogramming. The discovery also details the dynamics of this protein as well as its ...

Seeing clearly through a liquid

Sep 08, 2014

Accurately examining materials in liquids using electron microscopy is a difficult task for scientists, as electron beams perturb the sample and induce artifacts. This is especially true when using in situ ...

Recommended for you

Medical charity: Time running out to stop Ebola

1 minute ago

International efforts to stop the accelerating spread of Ebola in West Africa were ramping up Tuesday, but a medical charity warned that the response is still dangerously behind and time is running out to act.

Facing a post-antibiotic world

11 minutes ago

It's official. Humanity is racing towards a post-antibiotic era, a time when today's life-saving drugs won't successfully treat common infectious diseases or even infections from minor injuries.

User comments : 0