'Land of the ever-young' gene reprogrammes cells

Jun 14, 2006

University of Edinburgh scientists have discovered that the “ever-young” gene Nanog can cause adult cells to switch back to an embryonic state. The finding, to be published in the prestigious journal Nature, is the first to show that a specific gene affects the reprogramming of a mature cell type into a naïve state. The Edinburgh team believe this is a promising step towards understanding how to promote regeneration of damaged tissues and organs using a person’s own cells.

The team of scientists, lead by Professor Austin Smith at the Institute for Stem Cell Research, investigated the switching of adult cell types into embryonic stem cells after cell fusion. Fusion is the combination of two cells to form a single hybrid cell. Like nuclear transfer, the cloning process used to create Dolly the sheep, cell fusion can reprogramme the genetic information in a specialised cell to a naïve embryonic state. But this occurs very rarely. Says Professor Smith, “We set out to identify genes that could make reprogramming more efficient – our first candidate was Nanog because of its special role in formation of the early embryo and embryonic stem cells”.

The Edinburgh scientists fused mouse embryonic stem cells with brain stem cells, a type of adult stem cell. They found that the addition of Nanog resulted in a massive increase in the numbers of hybrid cells, all of which behaved like embryonic stem cells. Most importantly the hybrid cells showed the capacity to make many different cell types, such as heart and gut. “This means that the genetic programme of the brain cells has been erased and replaced by the unspecialised programme of an early embryo cell” says Dr Jose Silva, first author of this study.

Dr Silva adds “The effect of Nanog is remarkable. All of the hybrid cells become fully converted to embryonic stem cells. If we can figure out how Nanog does this, it may become possible to switch cell types without fusion or cloning.” However, the Edinburgh team must also identify at least one other key gene. “Nanog has great power” says Professor Smith, “but it does not work in isolation, only in partnership with other genes present in embryonic stem cells”.

This research was supported by the Biotechnology and Biological Sciences Research Council (BBSRC), the Medical Research Council (MRC) and The Wellcome Trust. Jose Silva was a Long-term Fellow of the European Molecular Biology Organisation (EMBO).

Citation: Silva, J, Chambers, I, Pollard, S and Smith, A (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature doi:10.1038/nature04914

Source: Nature

Explore further: Researchers discover low-grade nonwoven cotton picks up 50 times own weight of oil

add to favorites email to friend print save as pdf

Related Stories

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

Illuminating the dark side of the genome

Jul 29, 2014

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

Recommended for you

West Africa seals off Ebola outbreak epicentre

1 hour ago

West Africa's Ebola-hit nations announced a cross-border isolation zone on Friday, sealing off the epicentre of the world's worst-ever outbreak as health chiefs warned the epidemic was spiralling out of control.

New research characterizes in-flight pediatric deaths

2 hours ago

In a first-of-its-kind study, researchers at University Hospitals Rainbow Babies & Children's Hospital (UH Rainbow) found that lap infants may be at greater risk for death on a commercial airline flight. The study analyzed ...

Pepper and halt: Spicy chemical may inhibit gut tumors

3 hours ago

Researchers at the University of California, San Diego School of Medicine report that dietary capsaicin – the active ingredient in chili peppers – produces chronic activation of a receptor on cells lining ...

Clues to curbing obesity found in neuronal 'sweet spot'

3 hours ago

Preventing weight gain, obesity, and ultimately diabetes could be as simple as keeping a nuclear receptor from being activated in a small part of the brain, according to a new study by Yale School of Medicine ...

User comments : 0