Three-Way Symbiosis Supplies Insect Pest With Well-Rounded Diet

Jun 09, 2006

The glassy-winged sharpshooter obtains a well-rounded diet by playing nice with two bacteria species that live inside the insect's cells.

Researchers figured out the sharpshooter's nutritional secrets by analyzing the genes of the insect's symbiotic bacteria, internal hitchhikers the insect cannot live without.

The research is the first genomic analysis of an obligatory symbiotic relationship that has multiple partners.

The glassy-winged sharpshooter transmits Pierce's disease, a bacterial pathogen which is threatening California's vineyards. A few of the insects were found in the Sierra Vista, Ariz. area in 2005.

Plant-sucking insects such as sharpshooters can transmit disease as they suck the sap from plants. Knowing the genetic background of the insect's symbionts could lead to new ways to thwart the transmission of such plant diseases.

"The glassy-winged sharpshooter is one of the most important invasive insect pests in the world," said co-author Nancy A. Moran, a Regents' Professor of ecology and evolutionary biology at The University of Arizona in Tucson and a member of UA's BIO5 Institute. "This insect is really large and flies a long way, so it's a very good disease vector."

Moran and her colleagues' research article, "Metabolic complementarity and genomics of the dual bacteria symbiosis of sharpshooters," is in the June 2006 issue of the Public Library of Science Biology. A complete list of authors is at the end of this release. The research was funded by a National Science Foundation grant to Moran.

Many insects, such as aphids and cicadas, feed on the sap from pipes that transport water and food within a plant. These sap-feeders are often known to rely on resident bacteria for a balanced diet – especially the synthesis of the essential amino acids that all animals, including humans, cannot make for themselves.

Some of the sap-feeders tap into a sugar-rich type of sap known as phloem. In contrast, the glassy-winged sharpshooter, Homalodisca coagulata, taps into xylem, a sap only slightly more nutritious than flavored water.

“My initial interest in sharpshooter symbiosis was in the hope that we could find out exactly how xylem can be used as food,” said Moran, an expert in the co-evolution of insects and their resident bacteria known as endosymbionts. “It’s terribly poor in nutrients.”

The researchers decided to figure out what nutritional goodies the sharpshooter's endosymbionts produced to supplement the water and minerals and other nutrients supplied by the xylem. To do so, researchers in Moran's lab isolated bacterial DNA from sharpshooters.

Moran recruited Jonathan Eisen of The Institute for Genomic Research (TIGR), now at the University of California, Davis, to conduct the painstaking forensic type of DNA analysis known as "metagenomics." Such analyses sequence the DNA for an organism's entire set of genes, known as the genome, and reveals what kinds of materials those genes can produce.

The team assumed that sharpshooters carried Baumannia cicadellinicola, a known endosymbiont of sharpshooters. But the analysis of genes for that bacterium revealed vitamins-making capabilities, but no genes to direct the manufacture of essential amino acids.

The researchers, wondering if some other bacteria were also present, looked back at their DNA analyses. Some of the DNA matched neither the insect nor the endosymbiont Baumannia cicadellinicola. Reviewing those bits of DNA turned up genes from another bacterium, Sulcia mulleri.

The genes from the second bacterium coded for essential amino acids.

Eisen said, "When doing this type of forensic metagenomics, some scientists suggest you can just analyze the whole system as one unit—a so-called ‘black-box’ approach--without knowing which piece of DNA came from which organism."

He added, “But this black-box ecology just does not work well. To really understand the system, you’ve got to assign the different bits of DNA to organisms. This study shows why.”

The sharpshooter and the two bacteria depend on a three-way interaction. The sharpshooter channels some of the xylem's nutrients to the bacteria, which in turn feed the insect vitamins, cofactors and essential amino acids. In addition, the two bacterial species probably supply each other with needed nutrients.

The bacteria species, which live within the insect in a specialized structure called a bacteriome, are passed down from mother to daughter in the egg.

Moran said, "It's a three-way partnership. Each of the three organisms is essential to the whole."

The information in this release was prepared by Mari N. Jensen, with additional information from The Institute for Genomics Research.

Moran and Eisen's co-authors are Dongying Wu, Sean C. Daugherty, Kisha L. Watkins, Hoda Khouri, Luke J. Tallon and Jennifer M. Zaborsky of The Institute for Genomics Research in Rockville, Md.; Susan E. Van Aken and Grace H. Pai of the J. Craig Venter Institute, Joint Technology Center in Rockville, Md.; and Helen E. Dunbar and Phat L. Tran of The University of Arizona.

Source: By Mari N. Jensen, University of Arizona

Explore further: Lemurs match scent of a friend to sound of her voice

add to favorites email to friend print save as pdf

Related Stories

New light shed on key bacterial immune system

Apr 07, 2014

New insights into a surprisingly flexible immune system present in bacteria for combating viruses and other foreign DNA invaders have been revealed by researchers from New Zealand's University of Otago and ...

Math modeling integral to synthetic biology research

Apr 04, 2014

A long-standing challenge in synthetic biology has been to create gene circuits that behave in predictable and robust ways. Mathematical modeling experts from the University of Houston (UH) collaborated with experimental ...

Detour leads to antibiotic resistance

Mar 28, 2014

Ludwig Maximilian University researchers have used cryo-electron microscopic imaging to characterize the structural alterations in the bacterial ribosome that are required for induction of resistance to the ...

Recommended for you

Lemurs match scent of a friend to sound of her voice

11 hours ago

Humans aren't alone in their ability to match a voice to a face—animals such as dogs, horses, crows and monkeys are able to recognize familiar individuals this way too, a growing body of research shows.

Chrono, the last piece of the circadian clock puzzle?

13 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...