NIST Bullet Tests Make Frangibles More Tangible

Jun 08, 2006
NIST Bullet Tests Make Frangibles More Tangible

Researchers at the National Institute of Standards and Technology are measuring precisely the disintegration of “frangible” bullets when they strike a surface to better understand how the ammunition might affect body armor.

Frangible bullets, often made from sintered (formed by heat and pressure) metal powders that will break into tiny fragments, are designed to disintegrate on impact with a hard surface. They are becoming increasingly popular in situations where ricochets or “splash-back” from bullets is not tolerable. These include firearms training facilities and crowded places such as airports, courtrooms and office buildings. Additionally, the lead-free nature of frangible bullets eliminates the risk of exposure to that hazardous substance.

While frangible bullets have distinct advantages over conventional lead and copper-clad lead bullets, their characteristics are well known only for contact with hard surfaces. The behavior of such ammunition upon impact with softer materials—like those found in the soft body armors worn by many law enforcement officers and emergency responders—has raised concerns that some protective garments may be vulnerable to certain types of frangible bullets.

Initial research to assess this risk focused on ballistic penetration tests. Now NIST researchers are using a Kolsky bar apparatus—a NIST-built, air-powered device that can measure a metal’s response to the stress and strain of high-speed impacts—to document precisely what it takes for a frangible bullet to fail (or in this case, succeed, because the sintered metal’s breakdown is the desired outcome).

The test samples are small slices from frangible bullets that are sandwiched in the space between the Kolsky apparatus’ two hardened steel bars. An air gun situated at the far end of one bar propels a striker rod into the bar. This creates a fast-traveling disturbance called a strain wave that races down the bar at 5,000 meters per second (equivalent to 11,000 miles per hour) and compresses the sample. The wave energy transmitted through the bars can be measured to determine the strain and stress that the sample has endured.

Data derived from the NIST experiments will be used to better understand what happens when frangible bullets and body armor materials interact, and then serve as the foundation for additional bullet impact studies. Once that knowledge is in hand, the Department of Justice will reassess the current body armor performance standard to determine if special accommodations are necessary for frangible bullets.

Source: NIST

Explore further: Lifting the brakes on fuel efficiency

add to favorites email to friend print save as pdf

Related Stories

Android gains in US, basic phones almost extinct

8 hours ago

The Google Android platform grabbed the majority of mobile phones in the US market in early 2014, as consumers all but abandoned non-smartphone handsets, a survey showed Friday.

SpaceX launches supplies to space station (Update)

8 hours ago

The SpaceX company returned to orbit Friday, launching fresh supplies to the International Space Station after more than a month's delay and setting the stage for urgent spacewalking repairs.

Recommended for you

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.