Scientist uses form to explain function of key building blocks of life

Sep 30, 2005

UW-Madison biochemists have developed an approach that allows them to measure with unprecedented accuracy the strengths of hydrogen bonds in a protein. The scientists were then able to predict the function of different versions of the protein based on structural information, a novel outcome that was published recently in the Proceedings of the National Academy of Sciences.

Professor of biochemistry John Markley, along with a team that included graduate student I-Jin Lin, studied iron-sulfur proteins called rubredoxins that transfer energy in the form of electrons throughout living systems.

Rubredoxin is a key part of processes like photosynthesis and respiration, where energy is converted from one form to another.

"Variants of rubredoxin have evolved different sequences to transport electrons in the most efficient manner possible," Markley explains. "Different mechanisms have been put forward to explain this, and we wanted to understand how the proteins evolved to have different electron affinities."

Markley and his team used nuclear magnetic resonance spectroscopy, a technique that allowed them to observe signals from atoms in the proteins, to determine the strength of hydrogen bonds in ten different variants of the protein. From that data, the team was able to explain changes in protein function.

"In science, you try to build theories that will explain the properties of the systems you are looking at," explains Markley. "Proteins are the basic building blocks of life, and are coded for by the genes in DNA. We'd like to be able to start with a gene sequence and predict the structure of a protein and its function. In this case, given an NMR pattern, we can tell you how the protein will act. In general, this method may provide information about even more complex biological systems. This is an approach that will be important for larger proteins."

Markley notes that an undergraduate and graduate student played key roles in the study. Lin, who plans to complete her Ph.D. this spring, spent years tackling what Markley described as a "complex and difficult project."

Erika Gebel, the undergraduate on the study, is now pursuing a graduate degree of her own, a pursuit that was enhanced by this project, says Markley.

"(Undergraduate research) enables them to understand what research is and what's involved in exploring something that hasn't been observed before," he says.

Funded by a grant from the National Institutes of Health and by the state of Wisconsin, the study also relied upon the National Magnetic Resonance Facility at Madison, an NIH-funded laboratory located in the biochemistry department. William Westler, director of the NMR facility, was a co-author on the paper.

Source: University of Wisconsin System

Explore further: New IS video shows militants smashing ancient Iraq artifacts

add to favorites email to friend print save as pdf

Related Stories

US sees little severe weather so far in 2015

4 minutes ago

(AP)—While a big chunk of the nation deals with snow and ice, the U.S. is poised to end January and February with the fewest bouts of severe weather in decades.

Boy or girl? Lemur scents have the answer

7 hours ago

Dozens of pregnancy myths claim to predict whether a mom-to-be is carrying a boy or a girl. Some say you can tell by the shape of a woman's bump, or whether she craves salty or sweet.

SOHO sees something new near the sun

9 hours ago

An unusual comet skimmed past the sun on Feb 18-21, 2015, as captured by the European Space Agency (ESA) and NASA's Solar and Heliospheric Observatory, or SOHO.

Recommended for you

Ancient wheat points to Stone Age trading links

5 hours ago

(AP)—Britons may have discovered a taste for bread thousands of years earlier than previously thought, thanks to trade with more advanced neighbors on the European continent.

Humour in the 13th century characterized by ridicule

8 hours ago

We tend to think of the Middle Ages as grotesque and dreary. However, 13th century elites made use of laughter quite deliberately – and it resounded most loudly when it was at someone else's expense.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.