Innovation in Nanoporous Chemistry

Sep 30, 2005

Science researchers from the University of Versailles (France), in collaboration with the ID31 beam line at the European Synchrotron Radiation Facility (ESRF), report their progress in the design and characterisation of microporous materials.

The combination of adept chemistry and computational design made possible the synthesis of a new material, named MIL-101 by its originators, (where MIL stands for Matériaux de l’Institut Lavoisier), with very large internal pores (ø~3.4nm) and surface area (5,900 m2.g-1). The new, crystalline material is representative of a class of compounds, known as metal organic framework materials, (MOFs), with potential applications in many fields including chemical separation, heterogeneous catalysis and gas storage. Confirmation of the structure of the new material exploited the intense X-ray beams at the ESRF.

Porous materials with large, regular, accessible cages and tunnels are increasingly in demand for many applications including chemical separation or purification, catalysis, molecular sensors, electronics and gas storage. Depending on their structure and pore size, these materials allow molecules of only certain shapes and sizes to enter the pores, a property known as shape selectivity. The environment within the pores can be very different to that outside, thus promoting chemical reactions that do not occur in the bulk material. Another prospective use is as templates for forming calibrated, monodisperse nanomaterials. In this respect, the larger the pores, the wider the range of reactants that can be manipulated or stored.

Férey and co-workers’ strategy combined three main ideas. First, discrete multi-atom building units were designed and generated in solution (Fig. 1). Second, with the aim of producing a compound with large pores, the building units were combined to produce larger units. For MIL-101 the key building unit is a supercluster of four smaller clusters linked by difunctional organic components to make a large tetrahedral assembly. The third idea involves being sure of what you’ve actually made, i.e. how to determine the structure of the new material. It is well known that it becomes increasingly difficult to grow highly diffracting single crystals as structures grow larger. When single crystals are unavailable, powder diffraction can provide sufficient information for structure solution. Based on their understanding of the ways the building units might combine, possible structural models were predicted and assessed via a computational strategy that calculated their relative stability. Favourable solutions were then compared with the high quality powder diffraction data collected from MIL-101 at ESRF. Once a good match between the predicted and measured powder patterns was seen, the researchers could be sure of the nature of their new material.

This breakthrough opens up a new field for targeted chemistry, computational methods for structure prediction and most importantly novel materials with useful applications. Férey and co-workers describe the hydrid solid, MIL-101, as an excellent candidate for the storage of gas, creation of nano-objects in a regular and monodisperse mode with specific physical properties, or for drug delivery. Recent studies on smaller porous materials carried out by various research groups around the world leave open the possibility of successfully creating hydrid materials with even larger pores and more complex structures keeping always in mind that the most important goal should be to incorporate useful functions.

Source: European Synchrotron Radiation Facility (ESRF)

Explore further: Physicists heat freestanding graphene to control curvature of ripples

add to favorites email to friend print save as pdf

Related Stories

How salt causes buildings to crumble

Sep 11, 2014

Salt crystals are often responsible when buildings start to show signs of aging. Researchers from the Institute for Building Materials have studied salt damage in greater depth and can now predict weathering ...

Researchers create engineered energy absorbing material

Aug 21, 2014

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Drying Sierra meadows could worsen California drought

Aug 21, 2014

Carpeting the high valleys of Yosemite and other parts of the Sierra Nevada, mountain meadows are more than an iconic part of the California landscape. The roughly 17,000 high altitude meadows help regulate ...

'Shape-shifting' material could help reconstruct faces

Aug 13, 2014

Injuries, birth defects (such as cleft palates) or surgery to remove a tumor can create gaps in bone that are too large to heal naturally. And when they occur in the head, face or jaw, these bone defects ...

Recommended for you

Twisted graphene chills out

Sep 17, 2014

(Phys.org) —When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown.

Researchers use liquid inks to create better solar cells

Sep 17, 2014

(Phys.org) —The basic function of solar cells is to harvest sunlight and turn it into electricity. Thus, it is critically important that the film that collects the light on the surface of the cell is designed ...

User comments : 0