Distant ball of dust not dusty enough

Jun 06, 2006

One of the youngest supernova remnants known, a glowing red ball of dust created by the explosion 1,000 years ago of a supermassive star in a nearby galaxy, the Small Magellanic Cloud, exhibits the same problem as exploding stars in our own galaxy: too little dust.

Recent measurements by University of California, Berkeley, astronomers using infrared cameras aboard NASA's Spitzer Space Telescope show, at most, one-hundredth the amount of dust predicted by current theories of core-collapse supernovae, barely the mass of the planets in the solar system.

The discrepancy presents a challenge to scientists trying to understand the origins of stars in the early universe, because dust produced primarily from exploding stars is believed to seed the formation of new-generation stars. While remnants of supermassive exploding stars in the Milky Way galaxy also show less dust than predicted, astronomers had hoped that supernovae in the less-evolved Small Magellanic Cloud would accord more with their models.

"Most of the previous work was focused only on our galaxy because we didn't have enough resolution to look further away into other galaxies," said astrophysicist Snezana Stanimirovic, a research associate at UC Berkeley. "But with Spitzer, we can obtain really high resolution observations of the Small Magellanic Cloud, which is 200,000 light years away. Because supernovae in the Small Magellanic Cloud experience conditions similar to those we expect for early galaxies, this is a unique test of dust formation in the early universe."

Stanimirovic reports her findings in a presentation today (Tuesday, June 6) at a meeting of the American Astronomical Society in Calgary, Alberta, Canada.

Stanimirovic speculates that the discrepancy between theory and observations could result from something affecting the efficiency with which heavy elements condense into dust, from a much higher rate of dust destruction in energetic supernova shock waves, or because astronomers are missing a very large amount of much colder dust that could be hidden from infrared cameras.

This finding also suggests that alternative sites of dust formation, in particular the powerful winds from massive stars, may be more important contributors to the dust pool in primordial galaxies than are supernovae.

Massive stars - that is, stars that are 10 to 40 times bigger than our sun - are thought to end their lives with a massive collapse of their cores that blows the outer layers of the stars away, spewing out heavy elements like silicon, carbon and iron in expanding spherical clouds. This dust is thought to be the source of material for the formation of a new generation of stars with more heavy elements, so-called "metals," in addition to the much more abundant hydrogen and helium gas.

Stanimirovic and colleagues at UC Berkeley, Harvard University, the California Institute of Technology (Caltech), Boston University, and several international institutes form a collaboration called the Spitzer Survey of the Small Magellanic Cloud (S3MC). The group takes advantage of the Spitzer telescope's unprecedented resolution to study interactions in the galaxy between massive stars, molecular dust clouds and their environment.

According to Alberto Bolatto, a research associate at UC Berkeley and principal investigator of the S3MC project, "the Small Magellanic Cloud is like a laboratory for testing dust formation in galaxies with conditions much closer to those of galaxies in the early universe."

"Most of the radiation produced by supernova remnants is emitted in the infrared part of the spectrum," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "With Spitzer, we can finally see what these objects really look like."

Called a dwarf irregular galaxy, the Small Magellanic Cloud and its companion, the Large Magellanic Cloud, orbit the much larger Milky Way. All three are around 13 billion years old. Over eons, the Milky Way has pushed and pulled these satellite galaxies, creating internal turbulence probably responsible for the slower rate of star formation, and thus the slowed evolution that makes the Small Magellanic Cloud look like much younger galaxies seen farther away.

"This galaxy has really had a wild past," Stanimirovic said. Because of this, however, "the dust content and the abundance of heavy elements in the Small Magellanic Cloud are much lower than in our galaxy," she said, "while the interstellar radiation field from stars is more intense than in the Milky Way galaxy. All these elements were present in the early universe."

Thanks to 50 hours of observing with Spitzer's Infrared Array Camera (IRAC) and Multiband Imaging Photometer (MIPS), the S3MC survey team imaged the central portion of the galaxy in 2005. In one piece of that image, Stanimirovic noticed a red spherical bubble that she discovered corresponded exactly with a powerful X-ray source observed previously by NASA's Chandra X-ray Observatory satellite. The ball turned out to be a supernova remnant, 1E0102.2-7219, much studied during the past few years in the optical, X-ray and radio bands, but never before seen in the infrared.

Infrared radiation is emitted by warm objects, and in fact, radiation from the supernova remnant, visible in only one wavelength band, indicated that the 1,000-year-old dust bubble was nearly uniformly 120 Kelvin, corresponding to 244 degrees Fahrenheit below zero. E0102, among the youngest third of all known supernova remnants, probably resulted from the explosion of a star 20 times the size of the sun, and the debris has been expanding at about 1,000 kilometers per sec (2 million miles per hour) ever since.

The infrared data provided an opportunity to see if earlier generations of stars - ones with low abundances of heavy metals - correspond more closely to current theories of dust formation in exploding supermassive stars. Unfortunately, the amount of dust - nearly one-thousandth the mass of the Sun - was at least 100 times less than predicted, similar to the situation with the well-known supernova remnant Cassiopeia A in the Milky Way.

The S3MC team plans future spectroscopic observations with the Spitzer telescope that will provide information about the chemical composition of dust grains formed in supernova explosions.

Source: University of California - Berkeley

Explore further: New space telescope concept could image objects at far higher resolution than Hubble

add to favorites email to friend print save as pdf

Related Stories

A new, public view of the sky

Jan 07, 2015

For the first time, scientists and the public are beginning to see the large-scale structure of the universe, thanks to the Sloan Digital Sky Survey. UA scientists provide scientific expertise and crucial ...

10 facts about the Milky Way

Dec 04, 2014

The Milky Way Galaxy is an immense and very interesting place. Not only does it measure some 100,000–120,000 light-years in diameter, it is home to planet Earth, the birthplace of humanity. Our Solar System ...

Astronomers dissect the aftermath of a supernova

Nov 10, 2014

In research published today in the Astrophysical Journal, an Australian led team of astronomers has used radio telescopes in Australia and Chile to see inside the remains of a supernova.

Studying the physics of galaxies

Nov 03, 2014

Assistant Professor of Astronomy Evan Kirby arrived on campus in August. Born and raised in New Orleans, Kirby earned his BS in 2004 from Stanford University; his undergraduate thesis involved trips to Pasadena ...

Recommended for you

Chandra celebrates the International Year of Light

Jan 23, 2015

The year of 2015 has been declared the International Year of Light (IYL) by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining ...

Why is Andromeda coming toward us?

Jan 23, 2015

I don't want to alarm you, but there's a massive galaxy heading our way and will collide with us in a few billion years. But aren't most galaxies speeding away? Why is Andromeda on a collision course with ...

The cosmic chemistry that gave rise to water

Jan 22, 2015

Earth's water has a mysterious past stretching back to the primordial clouds of gas that birthed the Sun and other stars. By using telescopes and computer simulations to study such star nurseries, researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.