Scientists look through glass to find secrets that are less clear

Jun 06, 2006

A new understanding of how glass is formed may assist with our understanding of everything from the design of golf club heads to the structure of the early universe.

Princeton chemists have found that the formation of glass -- a familiar substance that nonetheless retains some elusive scientific mysteries -- always occurs differently depending on how quickly a liquid substance is cooled into its solid form.

Though the findings will likely dash the hopes of condensed matter physicists who have long sought in vain for what is known as an "ideal" glass transition, they may also one day contribute to industrialists' efforts to create better plastics and other useful polymers.

"Glasses can be formed from any substance, and the way their molecules interact places them somewhere at the border between solids and liquids, giving them some properties that manufacturers can exploit," said Sal Torquato, a professor of chemistry who is also affiliated with the Princeton Center for Theoretical Physics. "Golf club heads made of metallic glasses, for example, can make golf balls fly farther. While our research could be utilized by industry, it can actually help us understand any 'glassy' multi-particle system, such as the early universe -- which cosmologists have described as a glass."

Torquato emphasized that it would probably be years before such practical applications become a reality, and that the findings were most significant for advancing our fundamental understanding of how the state of matter known as glasses behaves.

Citation: Do Binary Hard Disks Exhibit an Ideal Glass Transition? Torquato et al., Phys. Rev. Lett., 84, 2064 (2000).

Source: Princeton University

Explore further: Strongly interacting electrons turn oxide interfaces into magnetically controlled and extra-efficient solar cells

add to favorites email to friend print save as pdf

Related Stories

Tablets, cars drive AT&T wireless gains—not phones

2 hours ago

AT&T says it gained 2 million wireless subscribers in the latest quarter, but most were from non-phone services such as tablets and Internet-connected cars. The company is facing pricing pressure from smaller rivals T-Mobile ...

Twitter looks to weave into more mobile apps

2 hours ago

Twitter on Wednesday set out to weave itself into mobile applications with a free "Fabric" platform to help developers build better programs and make more money.

Recommended for you

Three-dimensional metamaterials with a natural bent

Oct 24, 2014

Metamaterials, a hot area of research today, are artificial materials engineered with resonant elements to display properties that are not found in natural materials. By organizing materials in a specific way, scientists ...

Wild molecular interactions in a new hydrogen mixture

Oct 20, 2014

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

User comments : 0