Scientists look through glass to find secrets that are less clear

Jun 06, 2006

A new understanding of how glass is formed may assist with our understanding of everything from the design of golf club heads to the structure of the early universe.

Princeton chemists have found that the formation of glass -- a familiar substance that nonetheless retains some elusive scientific mysteries -- always occurs differently depending on how quickly a liquid substance is cooled into its solid form.

Though the findings will likely dash the hopes of condensed matter physicists who have long sought in vain for what is known as an "ideal" glass transition, they may also one day contribute to industrialists' efforts to create better plastics and other useful polymers.

"Glasses can be formed from any substance, and the way their molecules interact places them somewhere at the border between solids and liquids, giving them some properties that manufacturers can exploit," said Sal Torquato, a professor of chemistry who is also affiliated with the Princeton Center for Theoretical Physics. "Golf club heads made of metallic glasses, for example, can make golf balls fly farther. While our research could be utilized by industry, it can actually help us understand any 'glassy' multi-particle system, such as the early universe -- which cosmologists have described as a glass."

Torquato emphasized that it would probably be years before such practical applications become a reality, and that the findings were most significant for advancing our fundamental understanding of how the state of matter known as glasses behaves.

Citation: Do Binary Hard Disks Exhibit an Ideal Glass Transition? Torquato et al., Phys. Rev. Lett., 84, 2064 (2000).

Source: Princeton University

Explore further: Study helps uncover mechanism behind solid-solid phase transitions

add to favorites email to friend print save as pdf

Related Stories

Team improves solar-cell efficiency

6 hours ago

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

6 hours ago

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

Alibaba surges in Wall Street debut

6 hours ago

A buying frenzy sent Alibaba shares sharply higher Friday as the Chinese online giant made its historic Wall Street trading debut.

Dwindling wind may tip predator-prey balance

6 hours ago

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Recommended for you

New complex oxides could advance memory devices

Sep 17, 2014

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

User comments : 0