Miniaturisation of Fuel Cells Improves Prospects of Technology Commercialisation

Sep 29, 2005

To create a compelling microfuel cell technology, scientists have to look at providing power densities that are comparable to that of conventional or rechargeable batteries. Direct methanol fuel cell (DMFC), a popular fuel cell technology, only provides power density in the range of 20 to 50 mille watts per square cm (mW/cm2).

DMFCs will have to reach 100 mW/cm2 to avoid an output density shortfall and to meet the requirements of power-hungry devices such as notebook computers, handheld data collection devices and military equipment.

A DMFC needs a pump and pipes to carry out electrochemical processes. This creates space constraints and it becomes difficult to mount the system on a miniature scale.

A very effective alternative to DFMC is the direct formic acid fuel cell (DFAFC) technology, with five to six times higher power densities. Such high densities aid the miniaturisation of the fuel cells, especially in portable devices. They also improve the efficiency of the fuel cell without compromising on the net output of electricity.

“The use of formic acid as a fuel offers advantages such as less fuel cross-over, use of higher fuel concentrations (80 per cent by weight) at the anode side, good anode kinetics at room temperatures and high power densities,” says Frost & Sullivan Research Analyst Viswanathan Krishnan.

Researchers from Kongkuin University, Japan have worked and improved upon direct borohydride fuel cells (DBFCs) to eliminate or reduce glitches such as borohydride crossover by using a Nafion membrane electrolyte-based fuel cell. They claim to have achieved a power density of 160mW/cm2 at an operating temperature of 70 degree centigrade.

Taking this further, researchers at the Solid State and Structural Chemistry Unit of Indian Institute of Science, India have proposed a DBFC using hydrogen peroxide as the oxidant. The research team reports power density of 350mW/cm2 at a cell voltage of 1.2 V.

To generate this electricity, it is important to have catalysts to speed up the electrochemical process. Currently, only platinum and ruthenium are used in the fuel cells as catalysts. Scientists have been working on finding non-noble substitutes that are more cost-efficient for fuel cell technology.

“Scientists are considering nanomaterials as catalysts for fuel cells consisting of carbon-supported metal particles,” notes Krishnan. “The nanomaterial structure increases the surface-to-volume ratio of expensive noble metals and plays a vital role in reducing the overall cost of the fuel cell.”

At the University of Oxford, researchers have suggested using an enzyme catalyst within a fuel cell. Instead of the regular platinum-coated anode, they have used hydrogenase-coated electrode to catalyse efficient oxidation of hydrogen. The cathode contains the fungal enzyme laccase, which catalyses reduction of oxygen to water.

Microfuel cells have been taking giant strides in technology development. Newer designs that give them greater power and efficiency have firmly placed them on the path to commercialisation.


Explore further: Dish Network denies wrongdoing in $2M settlement

add to favorites email to friend print save as pdf

Related Stories

Recycling astronaut urine for energy and drinking water

Apr 09, 2014

On the less glamorous side of space exploration, there's the more practical problem of waste—in particular, what to do with astronaut pee. But rather than ejecting it into space, scientists are developing ...

Recommended for you

Technip, Heerema win third giant Angolan oil contract

10 minutes ago

The ultra-deep Angolan offshore oil project called Kaombo generated the third huge contract in three days on Wednesday when French group Total picked two firms to carry out underwater engineering worth $3.5 billion.

Bitcoin exchange MtGox placed in administration: CEO

40 minutes ago

Failed Bitcoin exchange MtGox was Wednesday placed in administration by a Japanese court, with an order for bankruptcy expected to be issued soon, its administrator and chief executive said.

Tech giants look to skies to spread Internet

3 hours ago

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

4 hours ago

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Gene removal could have implications beyond plant science

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...