'Missing' Dark Matter Is Really There, Says Hebrew University Cosmologist

Sep 28, 2005

A new analysis that refutes challenges to the existence of dark matter in certain galaxies appears in an article published this week in the journal Nature. Leading author of the article is Avishai Dekel, professor of physics at the Hebrew University of Jerusalem.

Accepted cosmological theory postulates that every observable galaxy in the universe (each made up of billions of stars similar to our sun) is embedded in a massive “halo" of dark matter. Though unseen, dark matter can be clearly detected indirectly by observing its tremendous gravitational effects on visible objects.

This common understanding faced a severe challenge when a team of astronomers, writing in Science in 2003, reported a surprising absence of dark matter in one type of galaxy – “elliptical" (rounded) galaxies. Their theory was based on observations that stars located at great distances from the center in such galaxies move at very slow speeds, as opposed to the great speed one would have expected from the heavy gravitational pull exerted by dark matter.

The new analysis in Nature provides a simple explanation for these observations. “In fact,” says Dekel, “our analysis fits comfortably with the standard picture in which elliptical galaxies also reside in massive dark matter halos.

"A dearth of dark matter in elliptical galaxies is especially puzzling in the context of the common theory of galaxy formation, which assumes that ellipticals originate from mergers of disk galaxies," added Dekel. "Massive dark-matter halos are clearly detected in disk galaxies, so where did they disappear to during the mergers?" asks Dekel.

The Nature article is based on simulations of galaxy mergers run on a supercomputer by graduate student Thomas J. Cox, supervised by Joel Primack, a professor of physics at the University of California, Santa Cruz. The simulations were analyzed by Dekel and collaborators Felix Stoehr and Gary Mamon at the Institute of Astrophysics in Paris, where Dekel is the incumbent of the Blaise Pascal International Chair of Research at the Ecole Normale Superieure.

The simulations show that the observations reported in Science are a predictable consequence of the violent collision and merger of the spiral galaxies that lead to the formation of the elliptical galaxies.

Illustration of computer simulation showing two spiral galaxies combining to form an elliptical galaxy at right.


Illustration of computer simulation showing two spiral galaxies combining to form an elliptical galaxy at right.

Evidence for dark matter halos around spiral galaxies comes from studying the circular motions of stars in these galaxies. Because most of the visible mass in a galaxy is concentrated in the central region, stars at great distances from the center would be expected to move more slowly than stars closer in. Instead, observations of spiral galaxies show that the rotational speed of stars in the outskirts of the disk remains constant as far out as astronomers can measure it.

The reason for this, according to the dark matter theory, is the presence of an enormous halo of unseen dark matter in and around the galaxy, which exerts its gravitational influence on the stars. Additional support for dark matter halos has come from a variety of other observations.

In elliptical galaxies, however, it has been difficult to study the motions of stars at great distances from the center. The scientists writing in Science found a decrease in the velocities with increasing distance from the center of the galaxy, which is inconsistent with simple models of the gravitational effects of dark matter halos.

Part of the explanation for that phenomenon, put forth in the new Nature paper, lies in the fact that the velocities in the earlier study were measured along the line of sight. "You cannot measure the absolute speeds of the stars, but you can measure their relative speeds along the line of sight, because if a star is moving toward us its light is shifted to shorter wave lengths, and if it is moving away from us its light is shifted to longer wave lengths," Primack explained.

This limitation would not be a problem if the orbits of the observed stars were randomly oriented with respect to the line of sight, According to Cox's simulations, however, the stars in elliptical galaxies that are farthest from the center are likely to be moving in elongated, eccentric orbits such that most of their motion is perpendicular to the line of sight. Therefore, they could be moving at high velocities without exhibiting much motion toward or away from the observers.

Why this is so is traceable to the processes whereby disk galaxies merge to form elliptical galaxies. "In the merger process that produces these galaxies, a lot of the stars get flung out to fairly large distances, and they end up in highly elongated orbits that take them far away and then back in close to the center," explained Dekel.

"If we see a star at a large distance from the center of the galaxy, that star is going to be mostly moving either away from the center or back toward the center. Almost certainly, most of its motion is perpendicular to our line of sight," Dekel said. Under such circumstances, the star would appear to be moving quite slowly, when in fact this is not the case, based upon the models of simulated galaxy mergers studied by the Hebrew University-UCSC-Paris team.


"Our conclusion is that what the cosmologists described in 2003 is exactly what the dark matter model would predict," he said, “Our findings remove a problem which bothered them and make it possible to better understand the processes involved in creation of new galaxies in the universe.”

Source: Hebrew University of Jerusalem

Explore further: Study of equatorial ridge on Iapetus suggests exogenic origin

add to favorites email to friend print save as pdf

Related Stories

Cosmologists weigh cosmic filaments and voids

Apr 17, 2014

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Astronomers challenge Cosmological Model

Apr 03, 2014

(Phys.org) —Astronomers Professor Chris Collins and Dr Ian McCarthy from LJMU's Astrophysics Research Institute are challenging the view that the currently preferred cosmological model of the Universe is ...

Fermi data tantalize with new clues to dark matter

Apr 03, 2014

(Phys.org) —A new study of gamma-ray light from the center of our galaxy makes the strongest case to date that some of this emission may arise from dark matter, an unknown substance making up most of the ...

Recommended for you

Another fireball explodes over Russia

2 hours ago

Why does Russia seem to get so many bright meteors? Well at 6.6 million square miles it's by far the largest country in the world plus, with dashboard-mounted cameras being so commonplace (partly to help ...

NASA's MMS observatories stacked for testing

3 hours ago

(Phys.org) —Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., accomplished another first. Using a large overhead crane, they mated two Magnetospheric Multiscale, or MMS, observatories – ...

ISEE-3 comes to visit Earth

4 hours ago

(Phys.org) —It launched in 1978. It was the first satellite to study the constant flow of solar wind streaming toward Earth from a stable orbit point between our planet and the sun known as the Lagrangian ...

Testing immune cells on the International Space Station

18 hours ago

The human body is fine-tuned to Earth's gravity. A team headed by Professor Oliver Ullrich from the University of Zurich's Institute of Anatomy is now conducting an experiment on the International Space Station ...

Easter morning delivery for space station

Apr 20, 2014

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

User comments : 0

More news stories

Another fireball explodes over Russia

Why does Russia seem to get so many bright meteors? Well at 6.6 million square miles it's by far the largest country in the world plus, with dashboard-mounted cameras being so commonplace (partly to help ...

ISEE-3 comes to visit Earth

(Phys.org) —It launched in 1978. It was the first satellite to study the constant flow of solar wind streaming toward Earth from a stable orbit point between our planet and the sun known as the Lagrangian ...

NASA's MMS observatories stacked for testing

(Phys.org) —Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., accomplished another first. Using a large overhead crane, they mated two Magnetospheric Multiscale, or MMS, observatories – ...

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

Teachers' scare tactics may lead to lower exam scores

As the school year winds down and final exams loom, teachers may want to avoid reminding students of the bad consequences of failing a test because doing so could lead to lower scores, according to new research published ...