Minerals go 'dark' near Earth's core

May 25, 2006
Minerals go 'dark' near Earth's core
The deep Earth mineral magnesiowüstite can transmit infrared radiation at normal atmospheric pressures, but loses this ability when squashed to over a half million times the pressure at sea level.

Minerals crunched by intense pressure near the Earth's core lose much of their ability to conduct infrared light, according to a new study from the Carnegie Institution's Geophysical Laboratory. Since infrared light contributes to the flow of heat, the result challenges some long-held notions about heat transfer in the lower mantle, the layer of molten rock that surrounds the Earth's solid core. The work could aid the study of mantle plumes--large columns of hot upwelling magma believed to produce features such as the Hawaiian Islands and Iceland.

Crystals of magnesiowüstite, a common mineral within the deep Earth, can transmit infrared light at normal atmospheric pressures. But when squashed to over half a million times the pressure at sea level, these crystals instead absorb infrared light, which hinders the flow of heat. The research will appear in the May 26, 2006 issue of the journal Science.

Carnegie staff members Alexander Goncharov and Viktor Struzhkin, with postdoctoral fellow Steven Jacobsen, pressed crystals of magnesiowüstite using a diamond anvil cell--a chamber bound by two superhard diamonds capable of generating incredible pressure. They then shone intense light through the crystals and measured the wavelengths of light that made it through. To their surprise, the compressed crystals absorbed much of the light in the infrared range, suggesting that magnesiowüstite is a poor conductor of heat at high pressures.

"The flow of heat in Earth's deep interior plays an important role in the dynamics, structure, and evolution of the planet," Goncharov said. There are three primary mechanisms by which heat is likely to circulate in the deep Earth: conduction, the transfer of heat from one material or area to another; radiation, the flow of energy via infrared light; and convection, the movement of hot material. "The relative amount of heat flow from these three mechanisms is currently under intense debate," Goncharov added.

Magnesiowüstite is the second most common mineral in the lower mantle. Since it does not transmit heat well at high pressures, the mineral could actually form insulating patches around much of the Earth's core. If that is the case, radiation might not contribute to overall heat flow in these areas, and conduction and convection might play a bigger role in venting heat from the core.

"It's still too early to tell exactly how this discovery will affect deep-Earth geophysics," Goncharov said. "But so much of what we assume about the deep Earth relies on our models of heat transfer, and this study calls a lot of that into question."

Source: Carnegie Institution

Explore further: NASA gets two last looks at Tropical Cyclone Jack

add to favorites email to friend print save as pdf

Related Stories

Drones unearth more details about Chaco culture

Apr 22, 2014

Recently published research describes how archaeologists outfitted a customized drone with a heat-sensing camera to unearth what they believe are ceremonial pits and other features at the site of an ancient village in New ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Pushy neighbors force stellar twins to diverge

Apr 15, 2014

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: The solar cycle

Apr 01, 2014

(Phys.org) —It took 10 years to create this image of our changing Sun. Taken from space by the Solar and Heliospheric Observatory (SOHO), it shows a dramatically different picture than the one we receive ...

Nanosheets and nanowires

Apr 01, 2014

Researchers in China, have found a convenient way to selectively prepare germanium sulfide nanostructures, including nanosheets and nanowires, that are more active than their bulk counterparts and could open ...

Recommended for you

NASA sees last vestiges of Tropical Depression Jack

16 hours ago

Tropical Cyclone Jack had weakened to a tropical depression when NASA and JAXA's Tropical Rainfall Measuring Mission (TRMM) satellite passed above on April 22, 2014 at 1120 UTC/7:20 a.m. EDT.

New discovery helps solve mystery source of African lava

20 hours ago

Floods of molten lava may sound like the stuff of apocalyptic theorists, but history is littered with evidence of such past events where vast lava outpourings originating deep in the Earth accompany the breakup ...

Climate change likely to make Everest even riskier

20 hours ago

Climbing to the roof of the world is becoming less predictable and possibly more dangerous, scientists say, as climate change brings warmer temperatures that may eat through the ice and snow on Mount Everest.

User comments : 0

More news stories

NASA image: Volcanoes in Guatemala

This photo of volcanoes in Guatemala was taken from NASA's C-20A aircraft during a four-week Earth science radar imaging mission deployment over Central and South America. The conical volcano in the center ...

On global warming, settled science and George Brandis

The Australian Attorney General, Senator George Brandis is no stranger to controversy. His statement in parliament that "people do have a right to be bigots" rapidly gained him notoriety, and it isn't hard to understand why ...

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Imaging turns a corner

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.