Prestigious award for the generation of attosecond pulses

May 23, 2006
Professor Ferenc Krausz
Professor Ferenc Krausz. Credit: Max Planck Institute for Quantum Optics

Professor Ferenc Krausz, Director at Max Planck Institute of Quantum Optics, receives the 2006 IEEE/LEOS Quantum Electronics Award
This award recognizes truly excellent and time-tested work in any of the fields of interest of LEOS. The 2006 IEEE Quantum Electronics Award will be presented to Ferenc Krausz for outstanding contributions to the field of ultrafast science, in particular to the generation of single attosecond pulses."

Professor Ferenc Krausz is recognized as one of the world’s leading scientists in the field of attosecond physics. In 2002 (when he was still professor at the University of Technology, Vienna) he succeeded - in collaborative work with Prof. Theodor Hänsch (Director at Max Planck Institute of Quantum Optics) using the Nobel Prize winning Frequency Comb-Technique - in developing "phase-stabilized" lasers for generating femtosecond pulses (a femtosecond is a millionth of a billionth of a second). This type of laser generates pulses that are identical from pulse to pulse not only in intensity and frequency but also in the position of the maxima and minima of the light oscillations. The perfectly controlled high-intensity fields of theses femtosecond pulses exert forces on electrically charged elementary particles (electrons or protons) that are comparable to intra-atomic forces.

This is the precondition for advancing into the attosecond domain (an attosecond is a billionth of a billionth of a second). When perfectly controlled femtosecond pulses hit gas atoms in a so-called "target", their strong electric field first knocks an electron from the atom and then immediately hurls it back. The recaptured electron emits the absorbed energy as a short light flash in the XUV (extremely short-wave ultraviolet) region.

The flash emitted by a single atom is immeasurable weak. However, millions of atoms are targeted by the femtosecond pulses and subsequently emit attosecond flashes perfectly synchronized with millisecond timing. This generates a strongly collimated laser-type beam of light pulses with a duration of 250 attoseconds. The SCIENCE journal celebrated the first production of attosecond radiation as one of the 10 most important achievements in science in 2002.

In 2003 Professor Krausz was appointed Director at Max Planck Institute of Quantum Optics (MPQ), where he is head of the "Attosecond and High-Field Physics" division. In 2004 he was also made head of the Department of Experimental Physics at Ludwig Maximilian’s University of Munich (LMU). The main interest of his MPQ-LMU-team is the control and real-time observation of the motion of electrons in atoms, molecules and solids using attosecond measuring technique.

Professor Krausz and his team are also pursuing the goal of developing new tools (e.g. high-energy electron and X-ray beams) for investigating microscopic processes with high resolution in both space and time. Such tools would constitute a space-time microscope that makes the motion of electrons visible with subatomic resolution in slow motion. The new radiation sources could also afford new prospects in structural biology and in the diagnosis and therapy of cancer.

Source: Max-Planck-Gesellschaft

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

Ultra-short laser pulses control chemical processes

Dec 12, 2012

Specially shaped laser pulses can be used to change the state of electrons in a molecule. This process only takes several attoseconds—but it can initiate another, much slower process: The splitting of the ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.