Trio of Neptunes and their belt

May 17, 2006
Planetary System Around HD 69830 (Artist's Impression)
The HARPS measurement reveal the presence of three planets with masses between 10 and 18 Earth masses around HD 69830, a rather normal star slightly less massive than the Sun. The planets´ mean distance are 0.08, 0.19, and 0.63 the mean distance between the Earth and the Sun. From previous observations, it seems that there exists also an asteroid belt, whose location is unknown. It could either lie between the two outermost planets, or farther from its parent star than 0.8 the mean Earth-Sun distance. Credit: ESO

Using the ultra-precise HARPS spectrograph on ESO's 3.6-m telescope at La Silla (Chile), a team of European astronomers have discovered that a nearby star is host to three Neptune-mass planets. The innermost planet is most probably rocky, while the outermost is the first Neptune-mass planet to reside in the habitable zone. This unique system is likely further enriched by an asteroid belt.

"For the first time, we have discovered a planetary system composed of several Neptune-mass planets", said Christophe Lovis, from the Geneva Observatory and lead-author of the paper presenting the results.

During more than two years, the astronomers carefully studied HD 69830, a rather inconspicuous nearby star slightly less massive than the Sun. Located 41 light-years away towards the constellation of Puppis (the Stern), it is, with a visual magnitude of 5.95, just visible with the unaided eye. The astronomers' precise radial-velocity measurements allowed them to discover the presence of three tiny companions orbiting their parent star in 8.67, 31.6 and 197 days.

Illustration of the possible formation process and present day structure of the planetary system around HD 68930. The three planets form from embryos originally located at larger distances (dashed ellipses) than the present ones (indicated by solid ellipses at 0.07, 0.18 and 0.63 the mean Earth-Sun distance). The embryos of the inner and middle planets start interior to the ice line, so that these two planets build up from rocky planetesimals and gas. The two planets consist of a central rocky core (in brown) and an envelope of gas (in gray). The embryo of the outermost planet starts beyond the ice line, and the planet accumulates a large amount of ice at the beginning of its formation. The planet finally consists of a central rocky core (brown), surrounded by a shell of water (ice or liquid - in blue), and a quite massive gas envelope (gray). Credit: ESO

"Only ESO's HARPS instrument installed at the La Silla Observatory, Chile, made it possible to uncover these planets", said Michel Mayor, also from Geneva Observatory, and HARPS Principal Investigator. "Without any doubt, it is presently the world's most precise planet-hunting machine".

The detected velocity variations are between 2 and 3 metres per second, corresponding to about 9 km/h! That's the speed of a person walking briskly. Such tiny signals could not have been distinguished from 'simple noise' by most of today's available spectrographs.

The newly found planets have minimum masses between 10 and 18 times the mass of the Earth. Extensive theoretical simulations favour an essentially rocky composition for the inner planet, and a rocky/gas structure for the middle one. The outer planet has probably accreted some ice during its formation, and is likely to be made of a rocky/icy core surrounded by a quite massive envelope. Further calculations have also shown that the system is in a dynamically stable configuration.

The outer planet also appears to be located near the inner edge of the habitable zone, where liquid water can exist at the surface of rocky/icy bodies. Although this planet is probably not Earth-like due to its heavy mass, its discovery opens the way to exciting perspectives.

"This alone makes this system already exceptional", said Willy Benz, from Bern University, and co-author. "But the recent discovery by the Spitzer Space Telescope that the star most likely hosts an asteroid belt is adding the cherry to the cake."

With three roughly equal-mass planets, one being in the habitable zone, and an asteroid belt, this planetary system shares many properties with our own solar system.

"The planetary system around HD 69830 clearly represents a Rosetta stone in our understanding of how planets form", said Michel Mayor. "No doubt it will help us better understand the huge diversity we have observed since the first extra-solar planet was found 11 years ago."

Source: European Southern Observatory

Explore further: Comet Jacques makes a 'questionable' appearance

add to favorites email to friend print save as pdf

Related Stories

Is our solar system weird?

Jul 18, 2014

Is our Solar System normal? Or is it weird? How does the Solar System fit within the strange star systems we've discovered in the Milky Way so far?

Transiting exoplanet with longest known year

Jul 21, 2014

Astronomers have discovered a transiting exoplanet with the longest known year. Kepler-421b circles its star once every 704 days. In comparison, Mars orbits our Sun once every 780 days. Most of the 1,800-plus ...

Peering into giant planets from in and out of this world

Jul 17, 2014

Lawrence Livermore scientists for the first time have experimentally re-created the conditions that exist deep inside giant planets, such as Jupiter, Uranus and many of the planets recently discovered outside ...

Recommended for you

Comet Jacques makes a 'questionable' appearance

20 hours ago

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

20 hours ago

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Image: Chandra's view of the Tycho Supernova remnant

Jul 25, 2014

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

User comments : 0