Electric field can align silver nanowires

May 17, 2006 feature
This series of scanning electron microscope images shows how increasing an electric field can align a bundle of silver nanowires, from disordered (a) to highly aligned (d). The white arrow indicates the direction of the electric current, which caused silver ions to migrate in the opposite direction. Credit: Jialin Sun

Scientists have discovered how to align silver nanowires in a controlled manner with an electric field. Their technique offers a possible route to sculpting and writing on nanowires, an ability that will likely have applications in industrial manufacturing.

Silver, one of the most precious metals for its shimmering beauty, also has the highest electrical conductivity of all metals. This property enabled a team of scientists from the Tsinghua University P.R. China to observe that a direct current electric field can align one-dimensional, 60 nm-diameter silver nanowires. The ability to control silver nanowire alignment will likely lead to the development of nanoelectronics as well as nanoscale photonic structures.

“This is the first time an electric field has been used to align silver nanowires,” Jialin Sun, coauthor of the paper recently published in Nanotechnology, told PhysOrg.com. “The high quality alignment of nanowires can help form optimal nanoscale optoelectronic devices with periodic structure.”

The electric field-alignment technique works because of the fact that the silver compound used by the scientists is a solid electrolyte at room temperature. As an electrolyte, silver ions can roam freely, and diverge from their crystalline lattices. So when the scientists applied an electric field, the disordered silver ions were free to align themselves under the field.

The study also found that the degree of alignment increased with an increase of the electric field strength. The series of images above, taken by a scanning electron microscope, shows the effect of progressive electric field strengths on a bundle of silver nanowires.

In the experiment, the silver ions tended to migrate along the direction of the current, causing the nanowires to “grow” parallel to the direction opposite the current. In the case of the strongest (400 V m-1) electric field, the nanowire bundle clustered into a dense, sheet-like structure. In fact, the nanowires actually became denser after the applied electric field, further enhancing their usability for nanoelectronics applications.

“The alignment of nanowires can be effectively controlled by adjusting the applied DCEF [direct current electric field] strength between the two electrodes, and improved by increasing the DCEF strength,” the scientists wrote.

In addition to the novelty, this method’s ease of preparation has smoothed the road toward prospective applications. Because the electric field-alignment technique can occur at room temperature, at normal atmospheric pressure and without any complicated and collapsible templates, the method has overcome many of the challenges of current approaches to nanowire alignment.

“It is believed that the synthesized alignment of metallic nanowires can be easily realized under normal conditions,” said Sun. “This technique will be very important for the process of industrial manufacturing. For example, this method can be used for the preparation of metallic nano-circuits, nanowire-grid polarizers, nanoscale photon crystals, nanoscale optical wave guides, and so on.”

The scientists also project that an electric field could “sculpt” nanowire structures, drawing lines and shapes with a scanning tunneling microscope.

Citation: Cao, Yang, et al. “A technique for controlling the alignment of silver nanowires with an electric field.” Nanotechnology 17 (2006) 2378-2380.

By Lisa Zyga, Copyright 2006 PhysOrg.com

Explore further: First direct observations of excitons in motion achieved

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

First direct observations of excitons in motion achieved

1 hour ago

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Shiny quantum dots brighten future of solar cells

Apr 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

User comments : 0

More news stories

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Shiny quantum dots brighten future of solar cells

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.