One-dimensional Diffusion Accelerates Molecular Motors

May 12, 2006
One-dimensional Diffusion Accelerates Molecular Motors
The movement of MCAK molecules (green) over time, along a microtubule (red). 20 points in time, from top to bottom. Credit: Max Planck Institute of Molecular Cell Biology and Genetics

Max Planck scientists have identified a new strategy which motor proteins use to move. The research was carried out by Prof. Jonathon Howard and Stefan Diez at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden. The motor protein MCAK (Mitotic Centromere Associated Kinesin) goes into action at the end of microtubules where it disassembles them.

This is in contrast to most other motor proteins, which transport materials over long distances along microtubules. The researchers were able to show that the protein reaches the position via a random, one-dimensional diffusion movement along the microtubule, until it locks into place at its end (Nature, May 4, 2006). This discovery is important for understanding cellular life processes like cell division and nerve cell growth.

When cells divide, they build a giant apparatus - the so called the "mitotic spindle". It is made up of microtubules; which are tiny protein polymers that can be built up and torn down like scaffolding. They also make up "tracks", along which motor proteins pull the halves of chromosomes into existing daughter cells. Until now, scientists have not known how the length of microtubule gets regulated, nor how the proteins reach the end of the microtubules to be regulated.

The Max Planck researchers looked at the example of the protein MCAK, and how it locates microtubule ends. Howard and his colleagues followed single MCAK molecules under the microscope and could see that MCAK docks randomly anywhere on a microtubule, and then slides around on its surface.

This "random" strategy is surprisingly efficient and successful. It allows MCAK to localize microtubule ends very quickly. Howard says, "when it gets there, MCAK eats like a Pacman into the end of the microtubule." The chromosome halves follow this movement and are this way accurately distributed on the daughter cells.

Source: Max-Planck-Gesellschaft

Explore further: Decreasing biodiversity affects productivity of remaining plants

Related Stories

United States, China team explore energy harvesting

3 hours ago

Six authors have described their work in harvesting energy in a paper titled "Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording." ...

China's struggle for water security

4 hours ago

Way back in 1999, before he became China's prime minister, Wen Jiabao warned that water scarcity posed one of the greatest threats to the "survival of the nation".

Canada revises upward CO2 emission data since 1990

5 hours ago

Canada revised its greenhouse gas emission data from 1990 to 2013 in a report Friday, showing it had higher carbon dioxide discharges each year, and a doubling of emissions from its oil sands.

Fish found in suspected tsunami debris boat quarantined

15 hours ago

The wreckage of a fishing boat that appears to be debris from the 2011 Japanese tsunami was carrying some unexpected passengers—fish from Japanese waters—when it was spotted off the Oregon coast.

Recommended for you

Down to three wolves on Isle Royale

13 hours ago

Only three wolves seem to remain in Isle Royale National Park. Researchers from Michigan Technological University observed the wolves during their annual Winter Study, and the lone group, at an unprecedented ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.