One-dimensional Diffusion Accelerates Molecular Motors

May 12, 2006
One-dimensional Diffusion Accelerates Molecular Motors
The movement of MCAK molecules (green) over time, along a microtubule (red). 20 points in time, from top to bottom. Credit: Max Planck Institute of Molecular Cell Biology and Genetics

Max Planck scientists have identified a new strategy which motor proteins use to move. The research was carried out by Prof. Jonathon Howard and Stefan Diez at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden. The motor protein MCAK (Mitotic Centromere Associated Kinesin) goes into action at the end of microtubules where it disassembles them.

This is in contrast to most other motor proteins, which transport materials over long distances along microtubules. The researchers were able to show that the protein reaches the position via a random, one-dimensional diffusion movement along the microtubule, until it locks into place at its end (Nature, May 4, 2006). This discovery is important for understanding cellular life processes like cell division and nerve cell growth.

When cells divide, they build a giant apparatus - the so called the "mitotic spindle". It is made up of microtubules; which are tiny protein polymers that can be built up and torn down like scaffolding. They also make up "tracks", along which motor proteins pull the halves of chromosomes into existing daughter cells. Until now, scientists have not known how the length of microtubule gets regulated, nor how the proteins reach the end of the microtubules to be regulated.

The Max Planck researchers looked at the example of the protein MCAK, and how it locates microtubule ends. Howard and his colleagues followed single MCAK molecules under the microscope and could see that MCAK docks randomly anywhere on a microtubule, and then slides around on its surface.

This "random" strategy is surprisingly efficient and successful. It allows MCAK to localize microtubule ends very quickly. Howard says, "when it gets there, MCAK eats like a Pacman into the end of the microtubule." The chromosome halves follow this movement and are this way accurately distributed on the daughter cells.

Source: Max-Planck-Gesellschaft

Explore further: Endangered clouded leopard kittens born in Miami zoo

Related Stories

Theory of the strong interaction verified

8 minutes ago

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

Antarctic ice shelves rapidly thinning

45 minutes ago

A new study led by Scripps Institution of Oceanography at UC San Diego researchers has revealed that the thickness of Antarctica's floating ice shelves has recently decreased by as much as 18 percent in certain ...

Galaxy clusters collide—dark matter still a mystery

45 minutes ago

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Recommended for you

Climate change costing soybean farmers

10 hours ago

Even during a good year, soybean farmers nationwide are, in essence, taking a loss. That's because changes in weather patterns have been eating into their profits and taking quite a bite: $11 billion over ...

Clues to aging from long-lived lemurs

10 hours ago

When Jonas the lemur died in January, just five months short of his thirtieth birthday, he was the oldest of his kind. A primate called a fat-tailed dwarf lemur, Jonas belonged to a long-lived clan. Dwarf ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.