Breathing Moonrocks

May 08, 2006
Apollo 17 geologist Harrison
Apollo 17 geologist Harrison "Jack" Schmitt scoops up some oxygen-rich moon rocks and soil.

An early, persistent problem noted by Apollo astronauts on the Moon was dust. It got everywhere, including into their lungs. Oddly enough, that may be where future Moon explorers get their next breath of air: The moon's dusty layer of soil is nearly half oxygen. The trick is extracting it.

"All you have to do is vaporize the stuff," says Eric Cardiff of NASA's Goddard Space Flight Center. He leads one of several teams developing ways to provide astronauts oxygen they'll need on the Moon and Mars.

Lunar soil is rich in oxides. The most common is silicon dioxide (SiO2), "like beach sand," says Cardiff. Also plentiful are oxides of calcium (CaO), iron (FeO) and magnesium (MgO). Add up all the O's: 43% of the mass of lunar soil is oxygen.

Cardiff is working on a technique that heats lunar soils until they release oxygen. "It's a simple aspect of chemistry," he explains. "Any material crumbles into atoms if made hot enough." The technique is called vacuum pyrolysis -- pyro means "fire", lysis means "to separate."

A lens focuses sunlight onto a vacuum chamber filled with simulated moondust, producing oxygen and "slag."

"A number of factors make pyrolysis more attractive than other techniques," Cardiff explains. "It requires no raw materials to be brought from Earth, and you don't have to prospect for a particular mineral." Simply scoop up what's on the ground and apply the heat.

In a proof of principle, Cardiff and his team used a lens to focus sunlight into a tiny vacuum chamber and heated 10 grams of simulated lunar soil to about 2,500 degrees C. Test samples included ilmenite and Minnesota Lunar Simulant, or MLS-1a. Ilmenite is an iron/titanium ore that Earth and the Moon have in common. MLS-1a is made from billion-year-old basalt found on the north shore of Lake Superior and mixed with glass particles that simulate the composition of the lunar soil. Actual lunar soil is too highly prized for such research now.

In their tests, "as much as 20 percent of the simulated soil was converted to free oxygen," Cardiff estimates.

What's leftover is "slag," a low-oxygen, highly metallic, often glassy material. Cardiff is working with colleagues at NASA's Langley Research Center to figure out how to shape slag into useful products like radiation shielding, bricks, spare parts, or even pavement.

The next step: increase efficiency. "In May, we're going to run tests at lower temperatures, with harder vacuums." In a hard vacuum, he explains, oxygen can be extracted with less power. Cardiff's first test was at 1/1,000 Torr. That is 760,000 times thinner than sea level pressure on Earth (760 Torr). At 1 millionth of a Torr -- another thousand times thinner -- "the temperatures required are significantly reduced."

Cardiff is not alone in this quest. A team led by Mark Berggren of Pioneer Astronautics in Lakewood, CO, is working on a system that harvests oxygen by exposing lunar soil to carbon monoxide. In one demonstration they extracted 15 kg of oxygen from 100 kg of lunar simulant--an efficiency comparable to Cardiff's pyrolysis technique.

D.L. Grimmett of Pratt & Whitney Rocketdyne in Canoga Park, CA, is working on magma electrolysis. He melts MLS-1 at about 1,400 deg. C, so it is like magma from a volcano, and uses an electric current to free the oxygen.

Finally, NASA and the Florida Space Research Institute, through NASA's Centennial Challenge, are sponsoring MoonROx, the Moon Regolith Oxygen competition. A $250,000 prize goes to the team that can extract 5 kg of breathable oxygen from JSC-1 lunar simulant in just 8 hours.

The competition closes June 1, 2008, but the challenge of living on other planets will last for generations.

Got any hot ideas?

More information:

Source: Science@NASA, by Dave Dooling

Explore further: New approach to form non-equilibrium structures

add to favorites email to friend print save as pdf

Related Stories

Digging deep in search of water on the moon

May 19, 2014

One of the main aims of the Apollo missions of the 1960s was to determine whether the moon had any water on it. If man were to build a colony on the moon, having water present would make living there easier.

Q&A: How life might expand in the universe

May 16, 2014

Michael Mautner, Ph.D., a research professor of chemistry in the Virginia Commonwealth University College of Humanities and Sciences, studies how life might expand beyond Earth, using meteorites to find how ...

This rover could hunt for lunar water and oxygen in 2018

Nov 29, 2013

In 2018, NASA plans to go prospecting at the moon's south pole with a rover—possibly, a version of the Canadian one in the picture above. The idea is to look for water and similar substances on the lunar ...

Electrolysis method described for making 'green' iron

May 08, 2013

Anyone who has seen pictures of the giant, red-hot cauldrons in which steel is made—fed by vast amounts of carbon, and belching flame and smoke—would not be surprised to learn that steelmaking is one of the world's leading ...

Moon mining a step closer with new lunar soil simulant

Feb 20, 2013

Australian researchers have developed a substance that looks and behaves like soil from the moon's surface and can be mixed with polymers to create 'lunar concrete', a finding that may help advance plans ...

Recommended for you

New approach to form non-equilibrium structures

15 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

17 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

21 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

22 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0