First Look at the 'Birth' of a Retina Cell

May 05, 2006

Scientists at the University of Michigan Kellogg Eye Center have gained new insight into the way an embryonic retina cell develops and then commits itself to a specific role. They have observed a small window of opportunity during which a cell has been designated to play a particular role, but has not yet begun to function as such.

The discovery provides a new vantage point for understanding how a healthy visual system develops. It also raises the possibility of re-directing the production of cell types as needed to stave off eye disease.

The study reports on the role of the gene regulator NRL, which was previously shown to be essential for the development of rods, the light-sensing cells required for vision.

Anand Swaroop, Ph.D., Harold F. Falls Collegiate Professor of Ophthalmology and Visual Sciences and Professor of Human Genetics, is senior author of both studies, the latest of which appeared in the March 7 issue of the Proceedings of the National Academy of Sciences (PNAS).

In PNAS, Swaroop's team reported that NRL is the earliest marker of rod precursors, or cells that are fated to become rods. They achieved this unique and early view of rod development by creating a mouse model using an NRL regulatory DNA sequence to produce a protein that appears as fluorescent green when exposed to blue light. This fluorescent protein allows scientists to identify even a few cells that are destined to be rods at very early stages of development.

“For the first time we were able to see retina cells during early development, allowing us to pinpoint the exact time at which rods are ‘born,’” says Swaroop. “Because the cells have been tagged, we can watch them at each step as they develop into mature and functional rods.” Kellogg scientists then purified the rods at various stages and generated the profile of genes at each stage. This, for the first time, provided a handle for investigating the precise process of rod differentiation.

Rods, along with cones, are photoreceptors, which account for 70 percent to 80 percent of all cells in the adult retina. Rods greatly outnumber cones in the mouse and in humans.

Damage to photoreceptors is at the root of eye diseases such as diabetic retinopathy, retinitis pigmentosa, and macular degeneration. In most instances, including age-related macular degeneration, rod photoreceptors die before cones.

As the mouse eye develops, rods start out as stem cells, meaning they have not yet been assigned a function and could theoretically grow to become any kind of cell. Along the way, these cells change their gene expression and acquire competence to become a specific cell type. At a certain point, cell division stops, and the cell is fated to perform a certain function.

“We can now view rod precursor cells at a crucial juncture,” says Swaroop. “They are committed to becoming rod cells, but they are still adaptable and have not yet ‘become' that type of cell.” In mouse models, it takes five to fourteen days for rod cells to become functional, whereas in humans this time period is four to five weeks during gestation.

The Swaroop research team also confirmed that when NRL is absent, a rod precursor will change its course and acquire the identity of a cone. “This finding in particular implies the existence of pools of progenitor cells with competence to become either a rod or a cone,” explains Swaroop. “We suggest that during early stages of development, these cells are not completely committed to a specific fate; there is an opportunity for regulators such as NRL to instruct these cells to produce rods or cones.”

With the ability to see greater detail in events along molecular pathways, Swaroop is enthusiastic about finding new methods for disrupting the disease process. There may also be opportunities to promote the production of new rods and cones when others die off.

In future studies, the Kellogg scientist plans to use this new mouse model in conjunction with other mouse models of specific diseases, such as macular and other retinal degenerations. Gene profiling of rods and cones in disease models at various stages of pathogenesis could help scientists identify molecular targets for drug treatment.

Swaroop is hopeful that his research group can use the fluorescent protein to illuminate the chain of events that occurs when a gene mutation interferes with rod — or even cone — development. “This model may give us the earliest look yet at some devastating diseases we are all eager to cure,” he says.

Citation: Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors, PNAS, March 7, 2006; vol. 103, no. 10: 3890-3895

Source: University of Michigan

Explore further: First successful vaccination against 'mad cow'-like wasting disease in deer

add to favorites email to friend print save as pdf

Related Stories

Granular model explains unusual behavior in sand

Nov 17, 2014

From a mechanical perspective, granular materials are stuck between a rock and a fluid place, with behavior resembling neither a solid nor a liquid. Think of sand through an hourglass: As grains funnel through, ...

Cheaper silicon means cheaper solar cells

Oct 22, 2014

Researchers at the Norwegian University of Science and Technology have pioneered a new approach to manufacturing solar cells that requires less silicon and can accommodate silicon with more impurities than ...

Recommended for you

Recorded Ebola deaths top 7,000

19 hours ago

The worst Ebola outbreak on record has now killed more than 7,000 people, with many of the latest deaths reported in Sierra Leone, the World Health Organization said as United Nations Secretary-General Ban ...

Liberia holds Senate vote amid Ebola fears (Update)

Dec 20, 2014

Health workers manned polling stations across Liberia on Saturday as voters cast their ballots in a twice-delayed Senate election that has been criticized for its potential to spread the deadly Ebola disease.

FDA OKs Cubist antibiotic for serious infections

Dec 20, 2014

The Food and Drug Administration has approved a new medicine to fight complex infections in the abdomen and urinary tract, the fourth antibiotic the agency has approved since May.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.