Clearing jams in copy machinery

Sep 19, 2005

Bacteria and humans use a number of tools to direct perhaps the most important function in cells -- the accurate copying of DNA during cell division. New research published this week in Molecular Cell from the laboratory of Rockefeller University's Michael O'Donnell, a Howard Hughes Medical Institute Investigator, now shows that one of these proteins, the beta sliding clamp, serves as a toolbelt from which the correct proteins are retrieved to enable DNA replication in the face of DNA damage.

The replication machinery inside the cell's nucleus is made up of a collection of enzymes including DNA polymerases, sliding clamps and clamp loaders. Bacteria have five known DNA polymerases (higher organisms such as humans have more). As the ring-shaped beta sliding clamp works its way along the DNA double helix, a network of proteins work together to unwind the two strands. Polymerases then add, in assembly line fashion, nucleotide bases -- the building blocks that make up DNA -- to convert the now-single-stranded templates into two new duplex DNA molecules.

The new research shows that two different DNA polymerases, the high fidelity Pol III replicase and the low fidelity Pol IV, coordinate their action to cross obstacles encountered in the replication process. They attach themselves at the same time to one beta sliding clamp. Pol III copies the original DNA, and acts as a proofreader to catch any misspellings and cuts any base that is wrong. But Pol III is a perfectionist, and can stall if it encounters a problem. Pol IV, on the other hand, lays down bases without checking for errors, keeping the process moving even when Pol III gets stuck. The findings by O'Donnell and his colleagues show that, because both polymerases are bound simultaneously to the beta clamp, it can pull either of the polymerases out if its toolbelt as needed.

O'Donnell and his colleagues propose two explanations for how the polymerase switch is controlled.

"One possibility is that the beta clamp may sense when Pol III stalls, triggering a change in beta that pulls the polymerase from the primed site, allowing Pol IV to take over synthesis," O'Donnell says. Or, Pol III, upon stalling, may loosen its grip on the template and allow Pol IV to bind the primed site instead.

Publication: Molecular Cell 19(6):805-814 (2005)

Source: Rockefeller University's Rockefeller University

Explore further: 'Moral victories' might spare you from losing again

add to favorites email to friend print save as pdf

Related Stories

Molecule stops DNA replication in its tracks

Oct 20, 2008

(PhysOrg.com) -- When a dividing cell duplicates its genetic material, a molecular machine called a sliding clamp travels along the DNA double helix, tethering the proteins that perform the replication. Researchers ...

Recommended for you

How to win a Tour de France sprint

4 hours ago

The final dash to the line in a Tour de France sprint finish may appear to the bystander to be a mess of bodies trying to cram into the width of a road, but there is a high degree of strategy involved. It ...

Radar search to find lost Aboriginal burial site

8 hours ago

Scientists said Tuesday they hope that radar technology will help them find a century-old Aboriginal burial ground on an Australian island, bringing some closure to the local indigenous population.

'Moral victories' might spare you from losing again

18 hours ago

It's human nature to hate losing. Unfortunately, it's also human nature to overreact to a loss, potentially abandoning a solid strategy and thus increasing your chances of losing the next time around.

User comments : 0