Researchers develop new method to monitor aircraft lifespan

May 05, 2006

Carnegie Mellon University Professor Anthony D. Rollett has developed a new computational method that may help track the lifespan of U.S. Navy aircraft.

"We have created a new way of creating three-dimensional computer models of the materials used in aircraft to help us determine when an aircraft is ready for an overhaul or when it should be retired,'' said Rollett, a professor in the Materials Science and Engineering Department.

At present, many Navy aircraft are more than 30 years old, so military officials are seeking a more precise system for reducing the risk and cost associated with ensuring the safety of U.S. military aircraft.

"We have been collaborating for more than two years with Carnegie Mellon's Professor Rollett on the problem of predicting the fatigue-limited lifetime of structural components like those found in aircraft,'' said John M. Papazian, a research scientist at Northrop Grumman Corp., one of the nation's leading defense contractors.

Essentially, what Carnegie Mellon researchers have done is to refine a system already developed in collaboration with Pittsburgh-based Alcoa to map the microstructure of materials into a three-dimensional digital material. The digital material is akin to a computer program and gives researchers the ability to conduct unlimited testing of the materials using computational methods. The novelty of the approach lies in being able to create many different examples of the material in the computer that can capture the variability of the material. This allows the results to be used in the statistically based systems that are used for tracking the lifetime of an aircraft.

"We are looking for any kind of defect in critical airplane parts,'' Rollett said. For example, moisture combined with dirt or salt creates perfect conditions for corrosion of airplane parts.

Industry analysts also point out that many Navy aircraft have to endure repeated aircraft carrier landings, which some aviation experts call "controlled crashes'' that put significant stress on airplane frames.

Source: Carnegie Mellon University

Explore further: College students use 'smart' technology in football helmets to detect injuries

add to favorites email to friend print save as pdf

Related Stories

Faradair team determined to make hybrid BEHA fly

Nov 28, 2014

Aiming to transform their concept into a real success, the Faradair team behind a six-seat Bio-Electric-Hybrid-Aircraft (BEHA) have taken this hybrid aircraft project into a crowdfunding campaign on Kickstarter. ...

Aircraft fuels must be sustainable in the future

Dec 02, 2014

In the near future car traffic will be able to run on electricity but air traffic remains dependent on liquid fuel. The National Food Institute, Technical University of Denmark aims to develop new and environmentally ...

Recommended for you

Building a machine that sorts candy colors with iPhone

Dec 23, 2014

The very idea of a machine being able to color-sort M&Ms teases an inventor's imagination and interest in machines, electronics and programming. A person with a website called "reviewmylife" had heard about ...

Laser technology aids CO2 storage capabilities

Dec 23, 2014

DOE's National Energy Technology Laboratory is attracting private industry attention and winning innovation awards for harnessing the power of lasers to monitor the safe and permanent underground storage ...

FAA, industry launch drone safety campaign

Dec 22, 2014

Alarmed by increasing encounters between small drones and manned aircraft, drone industry officials said Monday they are teaming up with the government and model aircraft hobbyists to launch a safety campaign.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.