Natural selection at single gene demonstrated

Apr 25, 2006

Biologists seeking elusive proof of natural selection at the single-gene level have a powerful new tool at their disposal. Chris Toomajian, postdoctoral researcher in molecular and computational biology in the USC College of Letters, Arts and Sciences, led a group that sought to replace the standard neutral model, a common but unrealistic test for natural selection, with a statistical method based on hard genomic data.

The group's research will be published online April 25 by Public Library of Science.

"Do we now have enough data to see the standard neutral model wasn't appropriate?" Toomajian asked. "We know something more now about how the population has been structured."

The standard neutral model makes improbable assumptions about population structure, such as assigning each individual an equal chance of reproducing.

Co-author Magnus Nordborg, associate professor of molecular and computational biology in USC College, predicted that earlier research would need to be revisited because the model makes it too easy to infer selection at any given gene.

"Once you start looking at enough cases then you realize that, oops, it's all under selection. I think a lot of that research is going to end up in the trash can," Nordborg said.

The group's method can be applied to any organism, including humans.

The PLoS paper focused on the weed Arabidopsis thaliana, and in particular on the FRIGIDA (FRI) gene, known to influence flowering time.

A. thaliana was once a plant that bloomed annually. But two versions of FRI that appeared thousands of years ago enabled the plant to flower year-round, helping it out-compete other plants.

Toomajian and his group showed that these two versions, also called gene variants, are too common to have spread solely by chance.

"We've shown that for one gene with an important role in that [flowering] process, there's good evidence that there's natural selection changing the behavior of the plants," Toomajian said.

Why the variants were selected remains unclear, though some have suggested that the plant evolved under pressure from the spread of agriculture.

Toomajian's group identified the gene variants through a comparison of 96 plants over 1,102 short fragments of the genome.

Each variant was assigned a score based on the similarity of two plants around the FRI gene relative to their similarity at other regions in the genome.

The higher the score, the less likely it is that a variant could have arisen and spread randomly.

The scoring formula accounts for the greater similarity expected in related plants.

Nordborg said that while natural selection is well documented at the whole-organism level, researchers consider biochemical proof of selection "the Holy Grail" of population genetics.

"What has proven very difficult is to connect specific molecular changes to selection," Nordborg said.

The PLoS paper, along with other recent studies based on intrinsic genomic comparisons, brings biology closer to this goal.

Source: University of Southern California

Explore further: Dutch scientists use smell to recreate JFK, Diana and other famous deaths

add to favorites email to friend print save as pdf

Related Stories

Big-data analysis reveals gene sharing in mice

Dec 16, 2014

Rice University scientists have detected at least three instances of cross-species mating that likely influenced the evolutionary paths of "old world" mice, two in recent times and one in the distant past.

Scientists find key to vitamin A metabolism

Dec 10, 2014

Researchers at Case Western Reserve University School of Medicine have uncovered the mechanism that enables the enzyme Lecithin: retinol acyltransferase (LRAT) to store vitamin A—a process that is indispensable ...

Fungus-growing ants selectively cultivate their crops

Dec 10, 2014

Ever since agriculture evolved ca 10.000 years ago, plants have been artificially selected to become the fast growing and highly productive varieties we know today. However, humans were not the first to see ...

Nutrient availability can cause whole-genome recoding

Dec 09, 2014

The availability of a trace nutrient can cause genome-wide changes to how organisms encode proteins, report scientists from the University of Chicago in PLoS Biology on Dec. 9. The use of the nutrient - which is produced by bac ...

Team proposes new model for snake venom evolution

Dec 08, 2014

Technology that can map out the genes at work in a snake or lizard's mouth has, in many cases, changed the way scientists define an animal as venomous. If oral glands show expression of some of the 20 gene ...

Recommended for you

All together now – three evolutionary perks of singing

Dec 24, 2014

We're enjoying the one time of year when protests of "I can't sing!" are laid aside and we sing carols with others. For some this is a once-a-year special event; the rest of the year is left to the professionals ...

Fish eye sheds light on color vision

Dec 23, 2014

A fish eye from a primitive time when Earth was but one single continent, has yielded evidence of color vision dating back at least 300 million years, researchers said Tuesday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.