Targeted Nanoparticles Destroy Prostate Tumors

Apr 25, 2006

Biodegradable polymer nanoparticles, linked to a protein-binding nucleic acid known as an aptamer and loaded with the anticancer agent docetaxel, can target and kill prostate tumors growing in mice. Using this targeted nanoparticle to deliver docetaxel appears to reduce the toxic side effects associated with this drug.

Writing in the journal Proceedings of the National Academy of Sciences, a team of researchers led by Omid Farokhzad, M.D., of the Harvard Medical School, and Robert Langer, Ph.D., of the Massachusetts Institute of Technology, reported on its work developing custom nanoparticles that can home in on malignant cells and then enter the cells to deliver lethal doses of chemotherapy. Langer is co-principal investigator of the MIT-Harvard Center of Cancer Nanotechnology Excellence (CCNE) and Farokhzad is a project leader with the MIT-Harvard CCNE.

The team conducted experiments first on cultured tumor cells and then on mice bearing human prostate tumors, both with success. In the experiments with mice, the tumors shrank dramatically, and all of the treated mice survived the study. In contrast, only 57 percent of the animals treated with an untargeted nanoparticle survived for the duration of the study, and only 14 percent of the animals treated with docetaxel alone survived. "A single injection of our nanoparticles completely eradicated the tumors in five of the seven treated animals, and the remaining animals also had significant tumor reduction, compared to the controls," said Farokhzad.

In the study, Farokhzad, Langer and colleagues tailor-made tiny sponge-like nanoparticles laced with the drug docetaxel. The particles are specifically designed to dissolve in a cell's internal fluids, releasing the anticancer drug either rapidly or slowly, depending on what is needed to kill a particular type of tumor. These nanoparticles were purposely made from materials that are familiar and approved for medical applications by the U.S. Food and Drug Administration.

Also, to make sure only the malignant cells receive chemotherapy, the nanoparticles are "decorated" on the outside with targeting molecules called aptamers, small pieces of RNA that are designed to bind tightly to specific proteins, much as protein-based antibodies do. Like homing devices, the aptamers specifically recognize the surface molecules on cancer cells, while avoiding normal cells. In this case, the researchers used an aptamer that binds to prostate-specific membrane antigen, a well-characterized protein found on the surface of prostate cancer cells.

This work, which was funded in part by the National Cancer Institute, is detailed in a paper titled, “Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo.” An investigator from the Gwangju Institute of Science and Technology in Korea also participated in this study. An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Physicists create new nanoparticle for cancer therapy

5 hours ago

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Nanoparticles cause cancer cells to self-destruct

Apr 03, 2014

Using magnetically controlled nanoparticles to force tumour cells to 'self-destruct' sounds like science fiction, but could be a future part of cancer treatment, according to research from Lund University ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...