Quantum physics predict chemical reactions

Sep 15, 2005

Purdue University scientists say chemists trying to predict how complex biological molecules react with others may soon get help from quantum physics.

Using supercomputers to analyze the interplay of electrons around such molecules, physicists led by Purdue's Jorge Rodriguez have found the quantum property of electrons called "spin" must be considered to obtain a complete picture of how many biochemical reactions take place.

In particular, a class of metal-based proteins -- including hemoglobin and chlorophyll -- and their reactions in plants and animals, can be better understood with the technique.

Rodriguez said the discovery could help scientists with a number of practical problems, such as selecting the best potential new drug compounds from a vast group of candidates, a process that can cost pharmaceutical companies years of work and millions of dollars.

"Whereas we have had to be satisfied with observing the chemistry in living things and describing it afterward without complete understanding, we are developing computational tools that can predict what will happen between molecules before they meet in the test tube," said Rodriguez, an assistant professor of physics.

Two papers on the subject appear in this week's issue of the Journal of Biological Chemistry.

Copyright 2005 by United Press International

Explore further: Physicists design quantum switches which can be activated by single photons

add to favorites email to friend print save as pdf

Related Stories

Quantum melting

Apr 07, 2014

When ice is warmed, the water molecules forming its structure vibrate more and more vigorously until finally the forces between them are no longer strong enough to hold them together – the ice melts and ...

Researchers open path to finding rare, polarized metals

Apr 02, 2014

Drexel University researchers are turning some of the basic tenets of chemistry and physics upside down to cut a trail toward the discovery of a new set of materials. They're called "polar metals" and, according ...

Ultrabright lasers help switch single photons

Mar 31, 2014

(Phys.org) —In the search for a single photon source, researchers in Australia and France have achieved a major step towards a turn-key source of individual, precisely tailored photons from an integrated ...

Bright future for protein nanoprobes

Mar 18, 2014

(Phys.org) —The term a "brighter future" might be a cliché, but in the case of ultra-small probes for lighting up individual proteins, it is now most appropriate. Researchers at the U.S. Department of ...

Quantum chaos in ultracold gas discovered

Mar 12, 2014

A team of University of Innsbruck researchers discovered that even simple systems, such as neutral atoms, can possess chaotic behavior, which can be revealed using the tools of quantum mechanics. The ground-breaking ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.