Some like it hot: Deep-sea worms seek temperatures higher than those preferred by any other known species

Apr 20, 2006
Some like it hot: Deep-sea worms seek temperatures higher than those preferred by any other known species
A small hydrothermal vent chimney is home to thermo-tolerant sulfide worms, seen here at the base of the chimney with their star-shaped gills protruding from their tubes. White patches at the base of the chimney are microbial mats. This photograph was taken at the Cleft hydrothermal field, located off the coast of Oregon 2,200 meters below sea level. (Courtesy of W. Chadwick/National Undersea Research Program and Monterey Bay Aquarium Research Institute)

Scientists have found that worms dwelling at deep-sea hydrothermal vents opt for temperatures of 45-55 degrees Celsius (113-131 degrees Fahrenheit) when provided a choice of conditions, giving them the highest thermal preference of any animal studied to date. This unique preference for extreme temperatures may be the undersea worms' meal ticket, because they are apparently the only animals able to access - and feast on - lush mats of bacteria that thrive around deep-sea vents.

The research was described last week in the journal Science.

Authors Peter R. Girguis of Harvard University and Raymond W. Lee of Washington State University studied Paralvinella sulfincola, a member of the Alvinellidae family of worms dwelling at ocean depths of some 2,200 meters off the Pacific coast of Washington. When the researchers placed the worms within a special high-pressure seawater aquarium with a sharp temperature gradient, these worms chose to remain at roughly 50 degrees Celsius for the duration of a seven-hour experiment.

"This is far longer than animals have survived other thermo-tolerance studies, where scientists exposed individuals to high temperatures for 15 to 30 minutes, as long as it took for half of them to die," says Girguis, assistant professor of organismic and evolutionary biology in Harvard's Faculty of Arts and Sciences. "Unlike many animals found in hot habitats, which merely tolerate extreme temperatures, these worms actually prefer temperatures around 50 degrees Celsius."

Girguis likens the worms' deep-sea habitat to a pot of scalding water heating inside a freezer. At extreme undersea pressures, water will not boil, so deep-sea thermal vents jet out water that remains liquid at temperatures of up to 350 degrees Celsius (662 degrees Fahrenheit). Because the surrounding seawater is barely above freezing, a steep and variable temperature gradient exists around the thermal vents, making it difficult to measure precisely the deep-sea temperatures survived by Alvinellid worms.

Rather than taking submarine-borne thermometers to the worms' remote habitat, Girguis and Lee brought the worms to their special aquarium, leaving the deep-sea creatures free to choose any temperature between 20 and 61 degrees Celsius (58 and 142 degrees Fahrenheit). When this thermal gradient was established, all the worms migrated to parts of the tank registering 45 to 55 degrees Celsius.

For seven hours the worms chose to remain at around 50 degrees Celsius, performing their normal behaviors. Other inhabitants of equally inhospitable environments are known to die fairly quickly under such conditions; in one previous study of desert fire ants, all died within one minute of exposure to a temperature of 55 degrees Celsius. Such ants will survive brief forays into similarly hot areas to obtain food, but do not choose to remain in superheated environs as Alvinellids do.

"We speculate that these worms have evolved to prefer and tolerate these temperatures because it allows them to graze on bacterial lawns that no other organism can access," Girguis says. "Bacteria can survive much higher temperatures than animals, and often grow in lush mats, or lawns, in areas too hot to support animal life."

Source: Harvard University, by Steve Bradt

Explore further: Local education politics 'far from dead'

add to favorites email to friend print save as pdf

Related Stories

The Isthmus of Panama: Out of the Deep Earth

Apr 01, 2014

As dates in geologic history go, the formation of the slender land bridge that joins South America and North America is a red-letter one. More than once over the past 100 million years, the two great landmasses ...

Recommended for you

Local education politics 'far from dead'

13 hours ago

Teach for America, known for recruiting teachers, is also setting its sights on capturing school board seats across the nation. Surprisingly, however, political candidates from the program aren't just pushing ...

First grade reading suffers in segregated schools

13 hours ago

A groundbreaking study from the Frank Porter Graham Child Development Institute (FPG) has found that African-American students in first grade experience smaller gains in reading when they attend segregated schools—but the ...

Violent aftermath for the warriors at Alken Enge

13 hours ago

Denmark attracted international attention in 2012 when archaeological excavations revealed the bones of an entire army, whose warriors had been thrown into the bogs near the Alken Enge wetlands in East Jutland ...

Why aren't consumers buying remanufactured products?

15 hours ago

Firms looking to increase market share of remanufactured consumer products will have to overcome a big barrier to do so, according to a recent study from the Penn State Smeal College of Business. Findings from faculty members ...

Expecting to teach enhances learning, recall

16 hours ago

People learn better and recall more when given the impression that they will soon have to teach newly acquired material to someone else, suggests new research from Washington University in St. Louis.

User comments : 0