Polluted ground water poured into a model

Apr 18, 2006

Dutch researcher Phil Ham has developed mathematical models to calculate the natural degradation capacity of polluted groundwater. As a result of this, it can now be predicted whether a polluted area will become larger or smaller. In the latter case, expensive remediation methods can be avoided.

Groundwater under contaminated sites, such as waste disposal sites and industrial areas, is often polluted. Such a polluted groundwater plume can grow, shrink or remain stable due to an interplay between physical, chemical and biological processes.

Phil Ham has devised mathematical expressions to determine the size of a plume and to assess the natural degradation capacity of contaminated sites. His analytical models calculate the reactive transport of dissolved matter in water through porous soil and the characteristics of the mixing processes. Such a scientifically-supported method had not previously been available.

Within the world of engineering there is a high demand for mathematical models that allow accurate predictions to be made. If it can be calculated whether a plume will decrease in size or remain stable, invasive and expensive remediation methods can possibly be avoided.

The results of this study enable predictions to be made about the effectiveness of natural degradation as a responsible alternative to aquifer remediation.

Source: Netherlands Organization for Scientific Research

Explore further: Why is Venus so horrible?

add to favorites email to friend print save as pdf

Related Stories

Avoiding ecosystem collapse

Nov 24, 2014

From coral reefs to prairie grasslands, some of the world's most iconic habitats are susceptible to sudden collapse due to seemingly minor events. A classic example: the decimation of kelp forests when a ...

Future air quality could put plants and people at risk

Nov 06, 2014

By combining projections of climate change, emissions reductions and changes in land use across the USA, an international research team estimate that by 2050, cumulative exposure to ozone during the summer will be high enough ...

Recommended for you

Why is Venus so horrible?

2 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

4 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

4 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

5 hours ago

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.