Team to develop materials to bend lightwaves backwards

Apr 13, 2006

A University of Michigan research team will receive a combined total of $5 million over the next five years to support an interdisciplinary research project on negative refraction—or bending lightwaves downward.

The group of physicists, electrical engineers, materials scientists, chemists and biologists from five universities will explore methods to produce new synthetic materials that can refract, or bend, light waves "backwards." The U-M team, led by physics professor Roberto Merlin, includes: Stephen Forrest, vice president for research, who has appointments in the Physics Department, and in the College of Engineering; Rachel Goldman, materials science and engineering professor; and Jinsang Kim, materials science and engineering professor.

The phrase "negative refraction" describes the property of a material that refracts light in the opposite direction of substances found in nature. Refraction is a well-known phenomenon of light and other electromagnetic radiation. In essence, it is observed as light bending as it passes from one medium to another. Stick your finger into an aquarium and you will see that the finger in the water does not appear to line up with the rest of your hand because light waves bend as they leave the water and go through the glass side and air before reaching your eye.

Since this negative refraction was first predicted in the 1960s, scientists have debated whether it exists, and have struggled to definitively demonstrate this property. In recent years, some of these obstacles have been overcome and scientists, including those at the UM, are developing new methods for creating "smart, self-assembling" polymers, organic thin films, and semiconductor materials with the desired negative refraction characteristics.

One goal of this research is to create materials that can perform as a lens without needing the curved surfaces found in traditional lenses. It has been predicted that materials with negative refraction can image objects that are significantly smaller than the wavelength of light. Although this is an impossible task for common materials, this may be achieved by the development of negative refraction media. Over the course of this project, the interdisciplinary team of researchers intends to improve upon existing materials exhibiting negative refraction at microwave frequencies and show the way toward the creation of a new class of devices with a broader range of applications.

The negative refraction project is one of 30 in the nation to be funded by the Department of Defense in fiscal year 2006 under the Multidisciplinary University Research Initiative (MURI) program. In all, $150 million will be spent by the 30 research projects over five years. The MURI program is designed to address large multidisciplinary topic areas representing exceptional opportunities for future Department of Defense applications and technology options. The awards will provide long-term support for research, graduate students and laboratory instrumentation development that supports specific science and engineering research themes vital to national defense.

Source: University of Michigan

Explore further: X-rays probe LHC for cause of short circuit

add to favorites email to friend print save as pdf

Related Stories

Metamaterial prism creates a reverse rainbow

Jan 09, 2015

(Phys.org)—In a normal rainbow, red is always on "top" while violet is on the "bottom." This is true whether the rainbow is created by a glass prism or by water droplets in the sky, and is due to the way ...

Recommended for you

X-rays probe LHC for cause of short circuit

1 hour ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

New insights found in black hole collisions

1 hour ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Swimming algae offer insights into living fluid dynamics

4 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

8 hours ago

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.