Scientists chart rapid advances of fluorescent tools for life-science research

Apr 13, 2006

An interdisciplinary team of biological imaging experts from the University of California, San Diego has published a review of fluorescent imaging technologies and underscored the importance of those technologies to major advances in the life sciences. The article--"The Fluorescent Toolbox for Assessing Protein Location and Function"--is the cover story in the April 14 issue of the journal Science.

"Fluorescent imaging is critical to the observation of dynamic processes in living systems," said lead author Ben Giepmans, a research scientist in the UCSD-based National Center for Microscopy and Imaging Research (NCMIR). "Some of these techniques now also allow researchers to localize the responsible molecular machine in situ by electron microscopy."

Giepmans' co-authors on the Science paper include NCMIR director and UCSD School of Medicine neurosciences professor Mark Ellisman, pharmacology project scientist Stephen Adams, and Roger Tsien, professor of pharmacology, chemistry and biochemistry. The National Institutes of Health and the Howard Hughes Medical Institute supported work directly related to this review.

In their survey, the scientists contrasted the characteristic benefits and limitations of many new classes of fluorescent probes for studying proteins, including quantum dots, fluorescent proteins, and some genetic tags. Color-rich photomicrographs now routinely appear in scientific journals to illustrate dynamic biochemical processes. Those processes range from the expression of a specific gene to the redistribution of protein within a living cell.

Progress in developing new fluorescent probes over the last decade has been dramatic. "Whole new classes of fluorescent dyes, fluorescent proteins, and other hybrid probes are being engineered to illuminate specific biochemical structures and processes within living cells," said Ellisman. "They also make possible the direct correlated imaging of the underlying molecular complexes at higher resolution by electron microscopy."

Fluorescence imaging is rapidly becoming a biochemist's tool of choice for studying processes within living cells. Its rapid expansion is partially tied to a synergy of developments, including the increasing ease of implementing innovative targeting strategies to key cell metabolites and structures. Concomitant advances in instrumentation and data analysis are enabling scientists to identify and quantify dynamic biochemical processes of living cells under light and electron microscopes. Fluorescence techniques are being adapted for clinical and biochemical assays like biopsies and high-throughput drug screening, and are just beginning to find wider application in functional assays of living cells and animals.

Source: University of California - San Diego

Explore further: No silver bullet: Study identifies risk factors of youth charged with murder

add to favorites email to friend print save as pdf

Related Stories

MasterCard, Zwipe announce fingerprint-sensor card

20 hours ago

On Friday, MasterCard and Oslo, Norway-based Zwipe announced the launch of a contactless payment card featuring an integrated fingerprint sensor. Say goodbye to PINs. This card, they said, is the world's ...

Plastic nanoparticles also harm freshwater organisms

22 hours ago

Organisms can be negatively affected by plastic nanoparticles, not just in the seas and oceans but in freshwater bodies too. These particles slow the growth of algae, cause deformities in water fleas and impede communication ...

Recommended for you

Insider trading study shows stronger enforcement

44 minutes ago

The first major study of the enforcement of Australia's insider trading laws has shown the number of insider trading cases brought by the Australian Securities and Investment Commission (ASIC) is increasing, ...

Study examines effects of credentialing, personalization

1 hour ago

Chris Gamrat, a doctoral student in learning, design and technology, recently had his study—completed alongside Heather Zimmerman, associate professor of education; Jaclyn Dudek, a doctoral student studying learning, design ...

New evidence on Neanderthal mixing

1 hour ago

New research on a 45,000-year-old Siberian thighbone has narrowed the window of time when humans and Neanderthals interbred to between 50,000 and 60,000 years ago, and has shown that modern humans reached ...

User comments : 0