Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope to study populations of stars in the universe's most massive galaxy clusters over a range of epochs - the earliest being nearly 7 billion years old, or half the age of the universe.

The team used the Hubble images to map the light distribution of the galaxies in the cluster. Data from the Gemini Multi-Object Spectrograph allowed the team to analyze the light from galaxies to determine their masses, ages and chemical compositions.

"We still don't have a clear picture of how galaxies develop over the history of the Universe, said team leader Jordi Barr of Oxford University. "The strength of this study is that we are able to look at galaxy clusters over a range of epochs."

Barr presented some of the first results of the Gemini/HST Galaxy Cluster Project at a meeting of the Royal Astronomical.

Galaxy clusters contain the most massive galaxies in the universe, but until recently astronomers thought all galaxies in the centers of clusters formed rapidly and then aged without any further changes to their structure in a process known as passive evolution. Results from the Gemini/HST Galaxy Cluster Project show this cannot be the case.

"When we're looking at the most distant galaxy clusters, we are looking back in time to clusters that are in early stages of their formation," Barr said. "The young galaxies in distant clusters appear to be very different from those in the mature clusters that we see in the local Universe."

Barr said his team discovered that the earliest galaxy clusters display a huge variation in their abundances of elements such as oxygen and magnesium, while the chemistry of galaxies in the sample of closer clusters appears to be much more homogenous.

"This difference in chemistry proves that the clusters must actively change over time," Barr said. "If the galaxies in the old clusters have acquired a complete set of elements, it's most likely that they have formed from the mergers of several young galaxies."

The team found star formation is most dependent on galactic mass, and in lower-mass galaxies star formation continues longer. The most massive galaxies in clusters appear to have formed all their stars by the time the universe is just over 1 billion years old, while lower-mass galaxies finish forming their stars some 4 billion years later.

"We see the effects of star-formation in low-mass galaxies, but are unsure about why it's happening," Barr said. "It's possible that star-formation can be shut down very rapidly in dense environments and that the lower-mass galaxies are recent arrivals that are forming stars over a longer period outside the cluster, then falling in - but we are still speculating."

The observations of merging galaxy clusters showed a large proportion of the galaxies in those clusters have undergone recent bursts of star formation. This indicates star formation may be triggered if galaxies are thrown, during the course of a merger, into contact with the gaseous medium pervading the cluster.

The team plans more observations at X-ray wavelengths to study the interactions between galaxies and the distribution and temperature of the surrounding gas.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: We are all made of stars

add to favorites email to friend print save as pdf

Related Stories

Evidence for supernovas near Earth

Aug 27, 2014

Once every 50 years, more or less, a massive star explodes somewhere in the Milky Way. The resulting blast is terrifyingly powerful, pumping out more energy in a split second than the sun emits in a million ...

A possible signal from dark matter?

Aug 12, 2014

(Phys.org) —Galaxies are often found in groups or clusters, the largest known aggregations of matter and dark matter. The Milky Way, for example, is a member of the "Local Group" of about three dozen galaxies, ...

Triangulum galaxy snapped by VST

Aug 06, 2014

The VLT Survey Telescope at ESO's Paranal Observatory in Chile has captured a beautifully detailed image of the galaxy Messier 33. This nearby spiral, the second closest large galaxy to our own galaxy, is ...

Best view yet of merging galaxies in distant universe

Aug 26, 2014

Using the Atacama Large Millimeter/submillimeter Array, and other telescopes, an international team of astronomers has obtained the best view yet of a collision that took place between two galaxies when the ...

Recommended for you

Observing the onset of a magnetic substorm

4 hours ago

Magnetic substorms, the disruptions in geomagnetic activity that cause brightening of aurora, may sometimes be driven by a different process than generally thought, a new study in the Journal of Geophysical Research: Space Ph ...

We are all made of stars

7 hours ago

Astronomers spend most of their time contemplating the universe, quite comfortable in the knowledge that we are just a speck among billions of planets, stars and galaxies. But last week, the Australian astronomical ...

ESA video: The ATV-5 Georges Lemaitre loading process

7 hours ago

This time-lapse video shows the ATV-5 Georges Lemaitre loading process and its integration on the Ariane 5 launcher before its transfer and launch to the International Space Station from Europe's Spaceport in Kourou, French ...

Raven soars through first light and second run

9 hours ago

Raven, a Multi-Object Adaptive Optics (MOAO) science demonstrator, successfully saw first light at the Subaru Telescope on the nights of May 13 and 14, 2014 and completed its second run during the nights ...

Titan's subsurface reservoirs modify methane rainfall

9 hours ago

(Phys.org) —The international Cassini mission has revealed hundreds of lakes and seas spread across the icy surface of Saturn's moon Titan, mostly in its polar regions. These lakes are filled not with water ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

JukriS
1 / 5 (1) Jul 12, 2009
Galaxies are huge particles who move in space who dont expanding.

All galaxies energy moving very fast before our stuff and time born.

Today galaxies move almost same direction, but young Universe time, galaxies moving more other direction.

All visible Universe galaxies move far away from one point, who is far away outside visible Universe.

One moment all visible Universe energy move out this space where we are now and next moment out that space where we just moved etc.

Nucleus of atoms expanding/exploding all a time and emit/radiate waves of energy who have a nature of electrons and particle who also expanding/exploding and emit/radiate waves of energy etc......

http://www.onesim....com/296