Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope to study populations of stars in the universe's most massive galaxy clusters over a range of epochs - the earliest being nearly 7 billion years old, or half the age of the universe.

The team used the Hubble images to map the light distribution of the galaxies in the cluster. Data from the Gemini Multi-Object Spectrograph allowed the team to analyze the light from galaxies to determine their masses, ages and chemical compositions.

"We still don't have a clear picture of how galaxies develop over the history of the Universe, said team leader Jordi Barr of Oxford University. "The strength of this study is that we are able to look at galaxy clusters over a range of epochs."

Barr presented some of the first results of the Gemini/HST Galaxy Cluster Project at a meeting of the Royal Astronomical.

Galaxy clusters contain the most massive galaxies in the universe, but until recently astronomers thought all galaxies in the centers of clusters formed rapidly and then aged without any further changes to their structure in a process known as passive evolution. Results from the Gemini/HST Galaxy Cluster Project show this cannot be the case.

"When we're looking at the most distant galaxy clusters, we are looking back in time to clusters that are in early stages of their formation," Barr said. "The young galaxies in distant clusters appear to be very different from those in the mature clusters that we see in the local Universe."

Barr said his team discovered that the earliest galaxy clusters display a huge variation in their abundances of elements such as oxygen and magnesium, while the chemistry of galaxies in the sample of closer clusters appears to be much more homogenous.

"This difference in chemistry proves that the clusters must actively change over time," Barr said. "If the galaxies in the old clusters have acquired a complete set of elements, it's most likely that they have formed from the mergers of several young galaxies."

The team found star formation is most dependent on galactic mass, and in lower-mass galaxies star formation continues longer. The most massive galaxies in clusters appear to have formed all their stars by the time the universe is just over 1 billion years old, while lower-mass galaxies finish forming their stars some 4 billion years later.

"We see the effects of star-formation in low-mass galaxies, but are unsure about why it's happening," Barr said. "It's possible that star-formation can be shut down very rapidly in dense environments and that the lower-mass galaxies are recent arrivals that are forming stars over a longer period outside the cluster, then falling in - but we are still speculating."

The observations of merging galaxy clusters showed a large proportion of the galaxies in those clusters have undergone recent bursts of star formation. This indicates star formation may be triggered if galaxies are thrown, during the course of a merger, into contact with the gaseous medium pervading the cluster.

The team plans more observations at X-ray wavelengths to study the interactions between galaxies and the distribution and temperature of the surrounding gas.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: Tidal forces gave moon its shape, according to new analysis

add to favorites email to friend print save as pdf

Related Stories

Algae under threat from invasive fish

39 minutes ago

Tropical fish invading temperate waters warmed as a result of climate change are overgrazing algae, posing a threat to biodiversity and some marine-based industries.

Violent aftermath for the warriors at Alken Enge

39 minutes ago

Denmark attracted international attention in 2012 when archaeological excavations revealed the bones of an entire army, whose warriors had been thrown into the bogs near the Alken Enge wetlands in East Jutland ...

Image: Wildfires continue near Yellowknife, Canada

42 minutes ago

The wildfires that have been plaguing the Northern Territories in Canada and have sent smoke drifting down to the Great Lakes in the U.S. continue on. NASA's Aqua satellite collected this natural-color image ...

Local education politics 'far from dead'

9 minutes ago

Teach for America, known for recruiting teachers, is also setting its sights on capturing school board seats across the nation. Surprisingly, however, political candidates from the program aren't just pushing ...

First grade reading suffers in segregated schools

19 minutes ago

A groundbreaking study from the Frank Porter Graham Child Development Institute (FPG) has found that African-American students in first grade experience smaller gains in reading when they attend segregated schools—but the ...

Recommended for you

Tidal forces gave moon its shape, according to new analysis

1 hour ago

The shape of the moon deviates from a simple sphere in ways that scientists have struggled to explain. A new study by researchers at UC Santa Cruz shows that most of the moon's overall shape can be explained by taking into ...

Evidence of a local hot bubble carved by a supernova

2 hours ago

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

JukriS
1 / 5 (1) Jul 12, 2009
Galaxies are huge particles who move in space who dont expanding.

All galaxies energy moving very fast before our stuff and time born.

Today galaxies move almost same direction, but young Universe time, galaxies moving more other direction.

All visible Universe galaxies move far away from one point, who is far away outside visible Universe.

One moment all visible Universe energy move out this space where we are now and next moment out that space where we just moved etc.

Nucleus of atoms expanding/exploding all a time and emit/radiate waves of energy who have a nature of electrons and particle who also expanding/exploding and emit/radiate waves of energy etc......

http://www.onesim....com/296