Winter Sea Ice Fails to Recover, Down to Record Low

Apr 06, 2006
Winter Sea Ice Fails to Recover, Down to Record Low
March 2006 mean sea ice extent, indicated by the red dot, is 300,000 square kilometers (115,860 square miles) less than the 2005 record, and 1.2 million square kilometers (463,000 square miles) below the 1979-2000 mean.

Scientists at NSIDC announced that March 2006 shows the lowest Arctic winter sea ice extent since the beginning of the satellite record in 1979 (see Figures 1 and 2). Sea ice extent, or the area of ocean that is covered by at least 15 percent ice, was 14.5 million square kilometers (5.60 million square miles) for this March, as compared to 14.8 million square kilometers (5.72 million square miles) for March 2005, the previous record.

The Arctic sea ice shrinks during the summer and grows, or recovers, during the winter. The ice reaches its maximum extent during March, with a long-term (1979-2000) monthly mean extent of 15.7 million square kilometers (6.06 million square miles). Winter sea ice extent has begun to show a significant downward trend over the past four years.

However, the winter recovery trend is not as striking as the sea ice minimum trend (see the press release Sea Ice Decline Intensifies, 28 September 2005). Changes in the sea ice minimum extent are especially important because more of the sun's energy reaches Earth's surface during the Arctic summer than during the Arctic winter. Sea ice reflects much of the sun's radiation back into space, whereas dark ice-free ocean water absorbs more of the sun's energy. So, reduced sea ice during the sunnier summer months has more of an impact on the Arctic's overall energy balance than reduced ice in the winter.

The lower winter extents are still important, however, because they reflect the pattern of reduced sea ice that scientists have already seen. Low winter recovery means that the ice is freezing up later in the fall and growing at a slower pace in the winter.

Walt Meier of NSIDC notes, "Poor winter recovery of the sea ice leads to less new ice growth and thinner ice. The weaker the ice at the end of winter, the more easily it melts the following summer."

Source: National Snow and Ice Data Center

Explore further: Lockheed Martin successfully mates NOAA GOES-R satellite modules

add to favorites email to friend print save as pdf

Related Stories

Climate change and the physics of falling icebergs

Sep 04, 2014

For thousands of years, the massive glaciers of Earth's polar regions have remained relatively stable, the ice locked into mountainous shapes that ebbed in warmer months but gained back their bulk in winter. ...

Weathering the storm

Sep 03, 2014

Old-timers sharing childhood stories about growing up in Maine sometimes recount hiking 10 miles uphill in 3 feet of snow to get to school—and home.

Climate change: meteorologists preparing for the worst

Aug 21, 2014

Intense aerial turbulence, ice storms and scorching heatwaves, huge ocean waves—the world's climate experts forecast apocalyptic weather over the coming decades at a conference in Montreal that ended Thursday.

Recommended for you

The Great Cold Spot in the cosmic microwave background

4 hours ago

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Winter in the southern uplands of Mars

4 hours ago

Over billions of years, the southern uplands of Mars have been pockmarked by numerous impact features, which are often so closely packed that they overlap. One such feature is Hooke crater, shown in this ...

Five facts about NASA's ISS-RapidScat

4 hours ago

NASA's ISS-RapidScat mission will observe ocean wind speed and direction over most of the globe, bringing a new eye on tropical storms, hurricanes and typhoons. Here are five fast facts about the mission.

User comments : 0