Finding a Better Way to Quiet Noisy Environments

Apr 05, 2006

Researchers at UCSD report in the April 4 issue of the Journal of Sound and Vibration a new mathematical algorithm designed to dramatically improve noise-cancellation technologies that are used to quiet everything from airplane cabins to commercial air conditioning systems. The new technique improves the ability to achieve destructive interference, the generation of anti-noise signals that combine with and destroy unwanted sounds.

“Noise cancellation is a hidden technology that most consumers aren’t aware of, but vehicles made by BMW, Mercedes, Honda, and other companies are now using it,” said Raymond de Callafon, co-author of the paper and a professor of mechanical and aerospace engineering at UCSD’s Jacobs School of Engineering. “Our new technique should greatly expand the potential of active noise-cancellation technologies.”

Basic active noise-cancellation is composed of four inter-related parts: a microphone that measures incoming noise and feeds that information to a computer, a computer processor that converts the noise information into anti-noise instructions, and an audio speaker that is driven by the anti-noise signal to broadcasts sound waves that are exactly 180 degrees out of phase with the unwanted signal and of the same magnitude. In addition, a downstream microphone monitors residual noise and signals the computer as part of a process to optimize the anti-noise signal.

This “feedforward” active-noise control can reduce unwanted helicopter and cabin noise or the steady roar of industrial air handling systems by 40 decibels or more. However, most commercial systems suffer from acoustic feedback because the anti-noise signal produced by the noise-cancellation speakers can feed back into the microphone and become amplified repeatedly until the resulting sound becomes an ear-splitting squeal or whistle.

“Most people ignore this acoustic coupling but we took it into account and designed the feedforward noise cancellation knowing that the acoustic coupling is there,” said de Callafon.

Some makers of active noise cancellation avoid acoustic coupling by shielding microphones from speakers, or by using directional microphones and speakers that are pointed away from each other. “This works fine in the case of noise-reduction headphones and air-conditioning ducts, but it’s impractical in hundreds of other applications,” de Callafon said.

For example, the algorithm developed by de Callafon and Ph.D. candidate J. Zeng may be adapted to cancel unwanted complex signals that are moving, such as the sound of bustling urban traffic coming through a ventilation opening.

“We think we’ve developed a totally new approach that works by generating the ‘feedforward’ noise cancellation signals and adaptively changing them in the presence of acoustic coupling,” de Callafon said. “This has been a really complicated problem to solve and we think the approach we’ve taken will have a significant impact on the field.”

Source: University of California, San Diego

Explore further: Future air passengers may get unique, windowless view

add to favorites email to friend print save as pdf

Related Stories

Selling and buying water rights

7 minutes ago

Trying to sell or buy water rights can be a complicated exercise. First, it takes time and effort for buyers and sellers to find each other, a process that often relies on word-of-mouth, local bulletin boards, ...

European Data Relay System on track

17 minutes ago

The first component of Europe's space data highway passed several critical tests this summer replicating the harsh launch and space conditions it will soon have to endure.

Recommended for you

AeroMobil 3.0 transforms from car to flying car

1 hour ago

A flying car is revealed: AeroMobil 3.0 was introduced this week at the Pioneers Festival in Vienna. The current prototype AeroMobil 3.0 incorporates improvements and upgrades to the previous AeroMobil 2.5.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.