Researchers Determine How Plants Decide Where to Position Their Leaves and Flowers

Apr 04, 2006

One of the quests of modern biologists is to understand how cells talk to each other in order to determine where to form major organs. An international team of biologists has solved a part of this puzzle by combining state-of-the-art imaging and mathematical modeling to reveal how plants go about positioning their leaves and flowers.

In the January 31 issue of the Proceedings of the National Academy of Sciences, researchers from the California Institute of Technology, the University of California at Irvine, and Lund University in Sweden reported their success in determining how a plant hormone known as auxin affects plant organ positioning. Experts already knew that auxin played some role in the development of plant organs, but the new study employs imaging techniques and computer modeling to propose a new theory about how the mechanism works.

The research involves the growing tip of the shoot of the plant Arabidopsis thaliana, a relative of the mustard plant that has been studied intensely by modern biologists. With its simple and very well understood genome, Arabidopsis lends itself to a wide variety of experiments.

The achievement of the researchers is their demonstration of how plant cells, with purely local information about their nearest neighbors' internal concentration of auxin, can communicate to determine the position of new flowers or leaves, which form in a regular pattern, with many cells separating the newly formed primordia (the first traces of an organ or structure). The authors theorize that the template the plant uses to make the larger parts comes from two mechanisms: a polarized transport of auxin into a feedback loop and a dynamic geometry arising from the growth and division of cells.

To capture the development, Beadle Professor of Biology Elliot Meyerowitz, division chair of the biology division at Caltech, and his team used green fluorescent proteins to mark specific cell types in the plant's meristem, the plant tissue in which regulated cell division, pattern formation, and differentiation give rise to plant parts like leaves and flowers.

The marked proteins allowed the group to image the cell's lineages through meristem development and differentiation leading to specific arrangement of leaves and reproductive growth, and also to follow changes in the concentration and movement of auxin.

Although the study applies specifically to the Arabidopsis plant, Meyerowitz says the mechanism is probably similar for other plants and even other biological systems in which patterning occurs in the course of development.

In addition to Meyerowitz, the paper's authors are Henrik Jönsson of Lund University, Marcus G. Heisler of Caltech's Division of Biology, Bruce E. Shapiro of Caltech's Biological Network Modeling Center, and Eric Mjolsness of UC Irvine's Institute of Genomics and Bioinformatics and department of computer science.

Source: Caltech

Explore further: Researchers create methylation maps of Neanderthals and Denisovans, compare them to modern humans

add to favorites email to friend print save as pdf

Related Stories

Diet of elusive red widow spider revealed

Mar 20, 2014

Beetles: it's what's for breakfast—at least for the red widow spider of Florida's "scrub" habitat, according to a study by University of Missouri biologist James Carrel. The study provides a first glimpse ...

Beavers keep riparian systems healthy

Feb 24, 2014

In some circles, beavers have long been considered pests that damage trees, clog up culverts, and build dams that inhibit or alter the natural flow of waterways. But, to two University of Wyoming researchers, ...

Sucker-footed fossils broaden the bat map

Feb 04, 2014

Today, Madagascar sucker-footed bats live nowhere outside their island home, but new research shows that hasn't always been the case. The discovery of two extinct relatives in northern Egypt suggests the ...

Researchers identify key pathway for plant cell growth

Jan 23, 2014

For plants, the only way to grow is for cells to expand. Unlike animals, cell division in plants happens only within a tiny region of the root and stem apex, making cell expansion the critical path to increased ...

New GM CEO hopes to inspire science students

Jan 13, 2014

The incoming CEO of General Motors hopes her appointment as the first woman to lead a global automaker will inspire young women and men to pursue careers in science.

Recommended for you

Study finds law dramatically curbing need for speed

Apr 18, 2014

Almost seven years have passed since Ontario's street-racing legislation hit the books and, according to one Western researcher, it has succeeded in putting the brakes on the number of convictions and, more importantly, injuries ...

Newlyweds, be careful what you wish for

Apr 17, 2014

A statistical analysis of the gift "fulfillments" at several hundred online wedding gift registries suggests that wedding guests are caught between a rock and a hard place when it comes to buying an appropriate gift for the ...

User comments : 0

More news stories

Clippers and coiners in 16th-century England

In 2017 a new £1 coin will appear in our pockets with a design extremely difficult to forge. In the mid-16th century, Elizabeth I's government came up with a series of measures to deter "divers evil persons" ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...