Neurobiologists uncover evidence of a 'memory code'

Sep 08, 2005

By examining how sounds are registered during the process of learning, UC Irvine neurobiologists have discovered a neural coding mechanism that the brain relies upon to register the intensity of memories based on the importance of the experience.

While neurobiologists have long hypothesized this type of neural coding, the study presents the first evidence that a "memory code" of any kind may exist. The UCI researchers believe that this code, as well as similar codes that may be discovered, will not only broaden our understanding of normal learning and memory but also may shed light on learning disorders. It may also one day be possible to manipulate these codes to control what and how we remember – not only basic sounds, but complicated information and events.

"This memory code may help explain both good and poor memory," said Norman Weinberger, a professor of neurobiology and behavior in UCI’s Center for the Neurobiology of Learning and Memory. "People tend to remember important experiences better than routine ones."

Weinberger and his colleagues found that when the brain uses this coding method, information is stored in a greater number of brain cells, which should result in a stronger memory. However, the researchers believe that if the brain fails to use the code, the resulting memory – even if it is an important one – would be weaker because fewer neurons would be involved.

Weinberger and postdoctoral researcher Richard Rutkowski discovered this coding system through studying how the primary auditory cortex responds to various sounds.

In the study, the researchers trained rats to press a bar to receive water when they heard a certain tone. The tone was varied in its importance to different rats as shown by their different levels of correct performance.

After brain mapping these test rats, the researchers found that the greater the importance of the tone, the greater the area of the auditory cortex that became tuned to it. The results in rats that received the same tones but were trained to a visual stimulus did not differ from those in untrained rats, showing that the behavioral importance of the tone, not its mere presence, was the critical factor.

Study results appear on the Online Early Edition of the Proceedings of the National Academy of Sciences. The National Institute on Deafness and Other Communication Disorders supported the effort.

Source: University of California, Irvine

Explore further: Ancient Greek well yields rare wooden statue

add to favorites email to friend print save as pdf

Related Stories

The 'Curie couple' of the Nordics

Oct 06, 2014

Norway's "Curie couple", May-Britt and Edvard Moser, have been virtually inseparable since their university days, but when news broke they had won the Nobel Medicine Prize, they were hundreds of miles apart.

Emerging ethical dilemmas in science and technology

Dec 10, 2013

As a new year approaches, the University of Notre Dame's John J. Reilly Center for Science, Technology and Values has released its annual list of emerging ethical dilemmas and policy issues in science and ...

Recommended for you

US state reaches deal to keep dinosaur mummy

10 hours ago

North Dakota reached a $3 million deal to keep a rare fossil of a duckbilled dinosaur on display at the state's heritage center, where it will serve as a cornerstone for the facility's $51 million expansion, officials said ...

Jerusalem stone may answer Jewish revolt questions

13 hours ago

Israeli archaeologists said Tuesday they have discovered a large stone with Latin engravings that lends credence to the theory that the reason Jews revolted against Roman rule nearly 2,000 ago was because ...

Kung fu stegosaur

13 hours ago

Stegosaurs might be portrayed as lumbering plant eaters, but they were lethal fighters when necessary, according to paleontologists who have uncovered new evidence of a casualty of stegosaurian combat. The ...

User comments : 0