Carbon Nanotubes with a Memory

Apr 03, 2006 feature
Carbon Nanotubes with a Memory
This image shows (a) the schematic structure of the flash-memory device and (b) a transmission electron microscope image of the device´s layered structure (the carbon-nanotube layer is labeled as "CNT").

Carbon nanotubes have successfully been made into a variety of nanoscale circuit components, including transistors, inverters, and switches. Now, a pair of scientists has made a rough, yet promising, flash memory device out of carbon nanotubes. The device is a long way from a finished, marketable product, but it nonetheless represents a significant step in the drive to incorporate carbon nanotubes into mainstream electronics.

“Unlike similar devices that have been made, which use carbon nanotubes but can only operate at very low, very impractical temperatures, our device displays impressive long-term information retention characteristics at room temperature,” said lead researcher Jiyan Dai, a physicist at The Hong Kong Polytechnic University, to PhysOrg.com. “This indicates that mainstream carbon nanotube-based flash memory devices are a real possibility.”

Flash memory devices are currently used to store data in many types of electronic items, including digital cameras, USB memory sticks, and cell phones. Flash memory is considered a “non-volatile” form of memory, meaning it can retain data without a constant supply of power.

A typical flash memory device stores information within a grid of transistors called cells. Each cell consists of three layers: a “control gate” compound and a “floating gate” compound separated by a thin layer of an insulating oxide compound. When a voltage is applied to the cell, electrons build up as negative electric charge in the floating gate. At a certain threshold of charge, the floating gate is considered closed and the cell is thought to have a value of “0.” When the charge drops below that level, the gate is open and the cell has a value of “1.” In this way, each cell is able to hold one bit of information (there are eight bits in one byte).

Dai and co-researcher X.B. Lu created their flash memory device using carbon nanotubes as the charge-storage layer. As described in a paper in the online edition of Applied Physics Letters, they embedded the nanotubes in a compound made of the elements hafnium, aluminum, and oxygen, abbreviated HfAlO, which serves as both the control gate and the oxide layer. This carbon-nanotube “sandwich,” with each layer only several nanometers in thickness, sits on a substrate of silicon.

Dai and Lu determined the charge-retention characteristics of the device by measuring, first, its capacitance (how well it stores electric charge) as a function of the voltage applied across it. They also measured how well the device held onto its charge as time elapsed, from fractions of a second up to nearly three hours. They found that the short-term charge retention wasn’t excellent. During the first couple of minutes, the “memory window” — the voltage range over which the device can retain information — became narrower, a property that is not desirable for flash memory devices. However, over the long term, the memory window remained at a value of about 0.5 V.

“We believe that the excellent long-term charge-retention characteristics of our device are due to the unique structure and electrical properties of carbon nanotubes,” said Dai.

Citation: “Memory effects of carbon nanotubes as charge storage nodes for floating gate memory applications,” Applied Physics Letters 88, 113104 (2006)

By Laura Mgrdichian, Copyright 2006 PhysOrg.com

Explore further: Nanomaterials to preserve ancient works of art

add to favorites email to friend print save as pdf

Related Stories

Bacteria become 'genomic tape recorders'

Nov 13, 2014

MIT engineers have transformed the genome of the bacterium E. coli into a long-term storage device for memory. They envision that this stable, erasable, and easy-to-retrieve memory will be well suited for ap ...

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

Recommended for you

Nanomaterials to preserve ancient works of art

2 hours ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

3 hours ago

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

Protons fuel graphene prospects

Nov 26, 2014

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.