Engineers Identify Materials for nMOS Metal Gate Electrodes

Mar 30, 2006

Sematech engineers have identified metal electrode materials that can be used to build reliable nMOS transistors with high‑k dielectric – a major milestone in the quest to fabricate working CMOS devices using metal gate and high-k dielectric stacks.

In recent years, the semiconductor industry has struggled with high gate leakage current and the limited scalability of SiO2 gate dielectrics. While high-k dielectrics were seen as an alternative, it has proven very difficult to find metal electrode materials to replace n- and p-type doped polysilicon gates.

In many cases, metal electrode materials showing workfunctions close to n+ or p+ type doped polysilicon gates reverted to unusable mid-gap workfunctions after going through CMOS device processing. That’s because the effective workfunction of metal electrodes is affected by several factors, including composition, underlying dielectric and heat cycles. Thus, the fabrication of metal-oxide semiconductor field-effect transistors (MOSFETs) with metal gates comparable to polysilicon gate MOSFETs has remained a huge challenge to industry researchers.

The accomplishment, involving nMOSFETs with metal electrodes showing an effective workfunction close to ~4.0eV, caps a three-year project involving nearly 40 engineers at Sematech and collaborating universities and suppliers. Technical details will be shared during the 2006 Symposium on VLSI Technology, scheduled June 13-15 in Honolulu, Hawaii.

“We systematically screened more than 250 material systems on various dielectrics,” said Byoung Hun Lee, manager of the Advanced Gate Stack Program in Sematech’s Front End Processes (FEP) Division. “From this work, we developed an understanding of how metal electrode materials and high-k dielectrics react, and how the effective workfunction of metal electrodes can be controlled to yield an effective workfunction close to that of doped polysilicon gates.”

Lee added, “Our approach will enable the industry to implement metal electrodes with minimum modifications to current CMOS process flow.”

Sematech’s progress on nMOSFET metal electrode technology comes on the heels of last year’s related breakthroughs in channel mobility and reliability of high-k metal gate transistors (www.sematech.org/corporate/news/releases/20050425.htm). That FEP work involved a halfnium silicate (HfSiO) dielectric with an equivalent oxide thickness (EOT) of roughly 10 angstroms (Å) with a metal gate, achieving mobility of 90 percent of the universal mobility curve for SiO2.

“These potential solutions for metal gate nMOSFETs bring high-k technology to a more practical realm,” said FEP Director Rajarao Jammy. He said key data and process details will be provided to Sematech members, and some details of the material systems for nMOSFET will be presented at upcoming technical conferences to promote consensus and additional research from industry and academia.

Source: Sematech

Explore further: Quantenna promises 10-gigabit Wi-Fi by next year

add to favorites email to friend print save as pdf

Related Stories

Creative activities outside work can improve job performance

53 minutes ago

Employees who pursue creative activities outside of work may find that these activities boost their performance on the job, according to a new study by San Francisco State University organizational psychologist Kevin Eschleman ...

Simplicity is key to co-operative robots

1 hour ago

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Freight train industry to miss safety deadline

2 hours ago

The U.S. freight railroad industry says only one-fifth of its track will be equipped with mandatory safety technology to prevent most collisions and derailments by the deadline set by Congress.

Recommended for you

Quantenna promises 10-gigabit Wi-Fi by next year

9 hours ago

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

New US-Spanish firm says targets rich mobile ad market

10 hours ago

Spanish telecoms firm Telefonica and US investment giant Blackstone launched a mobile telephone advertising venture on Wednesday, challenging internet giants such as Google and Facebook in a multi-billion-dollar ...

Environmentally compatible organic solar cells

10 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Twitter rules out Turkey office amid tax row

10 hours ago

Social networking company Twitter on Wednesday rejected demands from the Turkish government to open an office there, following accusations of tax evasion and a two-week ban on the service.

User comments : 0

More news stories

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Microsoft CEO is driving data-culture mindset

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

IBM posts lower 1Q earnings amid hardware slump

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.