Field guide for confirming new earth-like planets described

Sep 07, 2005
Field guide for confirming new earth-like planets described

Astronomers looking for earth-like planets in other solar systems — exoplanets — now have a new field guide thanks to earth and planetary scientists at Washington University in St. Louis.

Bruce Fegley, Ph.D., Washington University professor of earth and planetary sciences in Arts & Sciences, and Laura Schaefer, laboratory assistant, have used thermochemical equilibrium calculations to model the chemistry of silicate vapor and steam-rich atmospheres formed when earth-like planets are undergoing accretion . During the accretion process, with surface temperatures of several thousands degrees Kelvin (K), a magma ocean forms and vaporizes.

"What you have are elements that are typically found in rocks in a vapor atmosphere," said Schaefer. "At temperatures above 3,080 K, silicon monoxide gas is the major species in the atmosphere. At temperatures under 3,080 K, sodium gas is the major species. These are the indicators of an earth-like planet forming."

At such red-hot temperatures during the latter stages of the exoplanets' formation, the signal should be distinct, said Fegley.

"It should be easily detectable because this silicon monoxide gas is easily observable," with different types of telescopes at infrared and radio wavelengths, Fegley said.

Schaefer presented the results at the annual meeting of the Division of Planetary Sciences of the American Astronomical Society, held Sept. 4-9 in Cambridge, England. The NASA Astrobiology Institute and Origins Program supported the work.

Forming a maser

Steve Charnley, a colleague at NASA AMES, suggested that some of the light emitted by SiO gas during the accretion process could form a maser — Microwave Amplification by Stimulation Emission of Radiation. Whereas a laser is comprised of photons in the ultraviolet or visible light spectrum, masers are energy packets in the microwave image.

Schaefer explains: "What you basically have is a clump of silicon monoxide gas, and some of it is excited into a state higher than ground level. You have some radiation coming in and it knocks against these silicon monoxide molecules and they drop down to a lower state.

"By doing that, it also emits another photon, so then you essentially have a propagating light. You end up with this really very high intensity illumination coming out of this gas."

According to Schaefer, the light from newly forming exoplanets should be possible to see.

"There are natural lasers in the solar system," she said. "We see them in the atmospheres of Mars and Venus, and also in some cometary atmospheres."

In recent months, astronomers have reported earth-like planets with six to seven times the mass of our earth. While they resemble a terrestrial planet like earth, there has not yet been a foolproof method of detection. The spectra of silicon monoxide and sodium gas would be the indication of a magma ocean on the astronomical object, and thus an indication a planet is forming, said Fegley.

The calculations that Fegley and Schaefer used also apply to our own earth. The researchers found that during later, cooler stages of accretion (below 1,500 K), the major gases in the steam-rich atmosphere are water, hydrogen, carbon dioxide, carbon and nitrogen, with the carbon converting to methane as the steam atmosphere cools.

Source: Washington University in St. Louis

Explore further: Mysteries in Nili Fossae

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Mysteries in Nili Fossae

29 minutes ago

These new images from the high-resolution stereo camera on ESA's Mars Express show Nili Fossae, one of the most enticing regions on Mars. This 'graben system' lies northeast of the volcanic region of Syrtis ...

Image: Jupiter's cratered moon, Callisto

54 minutes ago

The speckled object depicted here is Callisto, Jupiter's second largest moon. This image was taken in May 2001 by NASA's Galileo spacecraft, which studied Jupiter and its moons from 1995 until 2003.

Helicopter could be 'scout' for Mars rovers

59 minutes ago

Getting around on Mars is tricky business. Each NASA rover has delivered a wealth of information about the history and composition of the Red Planet, but a rover's vision is limited by the view of onboard ...

Spacecraft Integral manoeuvres for the future

2 hours ago

Since 2002, ESA's Integral spacecraft has been observing some of the most violent events in the Universe, including gamma-ray bursts and black holes. While it still has years of life ahead, its fuel will ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.