How to Build A Big Star

Sep 06, 2005

The most massive stars in our galaxy weigh as much as 100 small stars like the Sun. How do such monsters form? Do they grow rapidly by swallowing smaller protostars within crowded star-forming regions?

Some astronomers thought so, but a new discovery suggests instead that massive stars develop through the gravitational collapse of a dense core in an interstellar gas cloud via processes similar to the formation of low mass stars.

"In the past, theorists have had trouble modeling the formation of high-mass stars and there has been an ongoing debate between the merger versus the accretion scenarios." said astronomer Nimesh Patel of the Harvard-Smithsonian Center for Astrophysics (CfA).

"We've found a clear example of an accretion disk around a high-mass protostar, which supports the latter while providing important observational constraints to the theoretical models."

Patel and his colleagues studied a young protostar 15 times more massive than the Sun, located more than 2,000 light-years away in the constellation Cepheus. They discovered a flattened disk of material orbiting the protostar. The disk contains 1 to 8 times as much gas as the Sun and extends outward for more than 30 billion miles - eight times farther than Pluto's orbit.

The existence of this disk provides clear evidence of gravitational collapse, the same gradual process that built the Sun. A disk forms when a spinning gas cloud contracts, growing denser and more compact. The angular momentum of the spinning material forces it into a disk shape. The planets in our solar system formed from such a disk 4.5 billion years ago.

Evidence in favor of high-mass accretion has been elusive since massive stars are rare and evolve quickly, making them tough to find. Patel and his colleagues solved this problem using the Submillimeter Array (SMA) telescope in Hawaii, which offers much sharper and highly sensitive imaging capabilities compared to single-dish submillimeter telescopes.

SMA is currently a unique instrument that makes such studies possible by allowing astronomers to directly image the dust emission at submillimeter wavelengths and also to detect emission from highly excited molecular gas.

The team detected both molecular gas and dust in a flattened structure surrounding the massive protostar HW2 within the Cepheus A star formation region. SMA data also showed a velocity shift due to rotation, supporting the interpretation that the structure is a gravitationally bound disk.

Combined with radio observations showing a bipolar jet of ionized gas, a type of outflow often observed in association with low-mass protostars, these results support theoretical models of high-mass star formation via disk accretion rather than by the merging of several low-mass protostars.

"Merging low-mass protostars wouldn't form a circumstellar disk and a bipolar jet," said co-author Salvador Curiel of the National Autonomous University of Mexico (UNAM), who is on sabbatical leave at CfA. "Even if they had circumstellar disks and outflows before the merger, those features would be destroyed during the merger."

The team plans more detailed observations using the SMA and the National Radio Astronomy Observatory's Very Large Array, which initially detected the bipolar jet.

The researchers, in addition to Patel, Ho, and Curiel, are: P. T. Ho, T. K. Sridharan, Q. Zhang, T. R. Hunter and J. M. Moran, of CfA; Jose M. Torrelles, Institute for Space Studies of Catalonia (IEEC)-Spanish Research Council (CSIC), Spain; and J. F. Gomez and G. Anglada, Instituto de Astrofisica de Andalucia (CSIC), Spain.

This research is being reported in the September 1, 2005, issue of Nature.

The SMA is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and is funded by the Smithsonian Institution and the Academia Sinica.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities.

Copyright 2005 by Space Daily, Distributed United Press International

Explore further: Computer model shows moon's core surrounded by liquid and it's caused by Earth's gravity

add to favorites email to friend print save as pdf

Related Stories

Fermi finds a 'transformer' pulsar

Jul 22, 2014

(Phys.org) —In late June 2013, an exceptional binary containing a rapidly spinning neutron star underwent a dramatic change in behavior never before observed. The pulsar's radio beacon vanished, while at ...

Is our solar system weird?

Jul 18, 2014

Is our Solar System normal? Or is it weird? How does the Solar System fit within the strange star systems we've discovered in the Milky Way so far?

Hubble sees a galaxy with a glowing heart

Jul 14, 2014

(Phys.org) —This view, captured by the NASA/ESA Hubble Space Telescope, shows a nearby spiral galaxy known as NGC 1433. At about 32 million light-years from Earth, it is a type of very active galaxy known ...

Black hole fireworks in nearby galaxy

Jul 03, 2014

(Phys.org) —Celebrants this Fourth of July will enjoy the dazzling lights and booming shock waves from the explosions of fireworks. A similarly styled event is taking place in the galaxy Messier 106, as ...

'Neapolitan' exoplanets come in three flavors

Jun 02, 2014

(Phys.org) —The planets of our solar system come in two basic flavors, like vanilla and chocolate ice cream. We have small, rocky terrestrials like Earth and Mars, and large gas giants like Neptune and ...

Recommended for you

Comet Jacques makes a 'questionable' appearance

13 hours ago

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

14 hours ago

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Titan offers clues to atmospheres of hazy planets

14 hours ago

When hazy planets pass across the face of their star, a curious thing happens. Astronomers are not able to see any changes in the range of light coming from the star and planet system.

Having fun with the equation of time

14 hours ago

If you're like us, you might've looked at a globe of the Earth in elementary school long before the days of Google Earth and wondered just what that strange looking figure eight thing on its side was.

User comments : 0